Surrogate-assisted multi-objective optimization via knee-oriented Pareto front estimation

被引:8
|
作者
Tang, Junfeng [1 ,2 ]
Wang, Handing [1 ,2 ]
Xiong, Lin [3 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Quantum Informat Shaanxi Pr, Xian 710071, Peoples R China
[3] Xidian Univ, SenseTime Joint Lab Smart Hlth Care, Xian 710000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Knee solutions; Expensive optimization; Pareto front estimation; Kriging; Evolutionary algorithm; Efficient global optimization; MANY-OBJECTIVE OPTIMIZATION; EVOLUTIONARY ALGORITHM;
D O I
10.1016/j.swevo.2023.101252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In preference-based multi-objective optimization, knee solutions are termed as the implicit preferred promising solution, particularly when users have trouble in articulating any sensible preferences. However, finding knee solutions by existing posteriori knee identification methods is hard when the function evaluations are expensive, because the computational budget wastes on non-knee solutions. Although a number of knee-oriented multi-objective evolutionary algorithms have been proposed to overcome this issue, they still demand massive function evaluations. Therefore, we propose a surrogate-assisted evolutionary multi -objective optimization algorithm via knee-oriented Pareto front estimation, which employs surrogate models to replace most of the expensive evaluations. The proposed algorithm uses a Pareto front estimation method and a cooperative knee point identification method to predict the potential knee vector. Then, based on the potential knee vector, the aggregated function with an error-tolerant assignment converts the original problem into a single-objective optimization problem for an efficient optimizer. We perform the proposed algorithm on 2-/3-objective problems and experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art knee identification evolutionary algorithms on most test problems within a limited computational budget.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [41] A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Tian, Ye
    Hu, Jiaxing
    He, Cheng
    Ma, Haiping
    Zhang, Limiao
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 80
  • [42] Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
    Qinghua Gu
    Qian Wang
    Neal N. Xiong
    Song Jiang
    Lu Chen
    Complex & Intelligent Systems, 2022, 8 : 2699 - 2718
  • [43] Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm
    Liu, Yan
    Collette, Matthew
    APPLIED SOFT COMPUTING, 2014, 24 : 482 - 493
  • [44] A Parallel Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Computationally Expensive Optimization Problems
    Syberfeldt, Anna
    Grimm, Henrik
    Ng, Amos
    John, Robert I.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3177 - +
  • [45] Diversity Based Surrogate-assisted Evolutionary Algorithm for Expensive Multi-objective Optimization Problem
    Sun Z.-R.
    Huang Y.-H.
    Chen Z.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (12): : 3814 - 3828
  • [46] A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (03) : 1247 - 1254
  • [47] Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm
    Liu, Yan
    Collette, Matthew
    Applied Soft Computing Journal, 2014, 24 : 482 - 493
  • [48] A survey on pareto front learning for multi-objective optimization
    Kang, Shida
    Li, Kaiwen
    Wang, Rui
    JOURNAL OF MEMBRANE COMPUTING, 2024,
  • [49] Representation of the pareto front for heterogeneous multi-objective optimization
    Thomann J.
    Eichfelder G.
    Journal of Applied and Numerical Optimization, 2019, 1 (03): : 293 - 323
  • [50] Surrogate-assisted multi-objective evolutionary optimization with a multi-offspring method and two infill criteria
    Li, Fan
    Gao, Liang
    Shen, Weiming
    Garg, Akhil
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 79