A Catalytic Electrolyte Additive Modulating Molecular Orbital Energy Levels of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries

被引:8
|
作者
Liu, Jing [1 ]
Zhou, Yuhao [1 ]
Xiao, Zhenxue [1 ]
Ren, Xiaozhe [1 ]
Liu, Sheng [1 ]
Yan, Tianying [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur battery; electrolyteadditive; electrocatalysis; molecular orbital energylevel; redox kinetics; REDOX; LI2S; CONVERSION; OXIDATION; DENSITY; SURFACE;
D O I
10.1021/acsami.3c10163
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-sulfur (Li-S) batteries have ultrahigh theoretical specific capacity, but the practical application is hindered by the severe shuttle effect and the sluggish redox kinetics of the intermediate lithium polysulfides (LiPSs). Effectively enhancing the conversion kinetics of LiPSs is essential for addressing these issues. Herein, the redox kinetics of LiPSs are effectively improved by introducing 6-azauracil (6-AU) molecules to the organic electrolyte to modulate the molecular orbital energy level of LiPSs. The 6-AU as a soluble catalyst can form complexes with LiPSs via Li-O bonds. These complexes are liable to transform because of the elevated HOMO and the reduced LUMO energy levels as compared to the dissociative LiPSs, resulting in small energy gaps (E-gap) and exhibiting stronger redox activity. Benefiting from the rapid conversion kinetics, the shuttling effect of LiPSs is alleviated to a great extent, so that sulfur utilization is improved and the lithium electrode is protected. In addition, the introduction of 6-AU modulates the deposition behavior of Li2S and eases the coverage of the cathode surface by the insulating Li2S layer. The Li-S battery containing 6-AU provides superior capacity retention of 853 mAh g(-1) after 150 cycles at 0.2 C and shows remarkable high-rate performance and retains a specific discharge capacity of 855 mAh g(-1) at 5 C. This study accelerates the kinetics of Li-S batteries by tuning the HOMO and LUMO energy levels of LiPSs, which opens an avenue for designing functional electrolyte additives.
引用
收藏
页码:55608 / 55619
页数:12
相关论文
共 50 条
  • [31] The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design
    Yu, Linghui
    Ong, Samuel Jun Hoong
    Liu, Xianhu
    Mandler, Daniel
    Xu, Zhichuan J.
    Electrochimica Acta, 2021, 392
  • [32] The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design
    Yu, Linghui
    Ong, Samuel Jun Hoong
    Liu, Xianhu
    Mandler, Daniel
    Xu, Zhichuan J.
    ELECTROCHIMICA ACTA, 2021, 392
  • [33] High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
    Huang, Yating
    Wang, Jiajun
    Zhao, Wei
    Huang, Lujun
    Song, Jinpeng
    Song, Yajie
    Liu, Shaoshuai
    Lu, Bo
    JOURNAL OF ENERGY CHEMISTRY, 2025, 102 : 263 - 270
  • [34] High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
    Yating Huang
    Jiajun Wang
    Wei Zhao
    Lujun Huang
    Jinpeng Song
    Yajie Song
    Shaoshuai Liu
    Bo Lu
    Journal of Energy Chemistry, 2025, 102 (03) : 263 - 270
  • [35] Functional organosulfide electrolyte for high performance lithium-sulfur batteries
    Chen, Shuru
    Gao, Yue
    Wang, Donghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [36] Graphdiyne nanostructure for high-performance lithium-sulfur batteries
    Wang, Fan
    Zuo, Zicheng
    Li, Liang
    He, Feng
    Li, Yuliang
    NANO ENERGY, 2020, 68
  • [37] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [38] Targeted Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Nazir, Aqsa
    Pathak, Anil
    Hamal, Dambar
    Awadallah, Osama
    Motevalian, Saeme
    Claus, Ana
    Drozd, Vadym
    El-Zahab, Bilal
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)
  • [39] Mo3P/Mo heterojunction for efficient conversion of lithium polysulfides in high-performance lithium-sulfur batteries
    Sun, Zhongpeng
    Wang, Yuanhao
    Xu, Jie
    Wang, Xia
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [40] Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries
    Li, Caixia
    Xi, Zhucong
    Guo, Dexiang
    Chen, Xiangju
    Yin, Longwei
    SMALL, 2018, 14 (04)