The Wigner-Vlasov formalism for time-dependent quantum oscillator

被引:0
|
作者
Perepelkin, E. E. [1 ,2 ,3 ]
Sadovnikov, B., I [1 ]
Inozemtseva, N. G. [2 ,4 ]
Korepanova, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow Tech Univ Commun & Informat, Moscow 123423, Russia
[3] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia
[4] Dubna State Univ, Dubna 141980, Moscow Region, Russia
关键词
exact solution of the time-dependent schrodinger equation; hill equation; mathieu equation; wigner function; vlasov equation; HARMONIC-OSCILLATOR; MOTION; MASS;
D O I
10.1088/1402-4896/acf809
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a comprehensive investigation of the problem of a harmonic oscillator with time-depending frequencies in the framework of the Vlasov theory and the Wigner function apparatus for quantum systems in the phase space. A new method is proposed to find an exact solution of this problem using a relation of the Vlasov equation chain with the Schrodinger equation and with the Moyal equation for the Wigner function. A method of averaging the energy function over the Wigner function in the phase space can be used to obtain time-dependent energy spectrum for a quantum system. The Vlasov equation solution can be represented in the form of characteristics satisfying the Hill equation. A particular case of the Hill equation, namely the Mathieu equation with unstable solutions, has been considered in details. An analysis of the dynamics of an unstable quantum system shows that the phase space square bounded with the Wigner function level line conserves in time, but the phase space square bounded with the energy function line increases. In this case the Vlasov equation characteristic is situated on the crosspoint of the Wigner function level line and the energy function line. This crosspoint moves in time with a trajectory that represents the unstable system dynamics. Each such trajectory has its own energy, and the averaging of these energies by the Wigner function results in time-dependent discreet energy spectrum for the whole system. An explicit expression has been obtained for the Wigner function of the 4th rank in the generalized phase space x,p,p,p''.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] QUANTUM STATISTICS OF THE TODA OSCILLATOR IN THE WIGNER FUNCTION FORMALISM
    VOJTA, G
    VOJTA, M
    [J]. ANNALEN DER PHYSIK, 1988, 45 (08) : 614 - 625
  • [2] Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30): : 6495 - 6503
  • [3] QUANTUM HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY
    SOLIMENO, S
    DIPORTO, P
    CROSIGNA.B
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1922 - &
  • [4] Unitary transformations for the time-dependent quantum oscillator
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1995, 51 (02):
  • [5] Quantum harmonic oscillator with time-dependent mass
    Ramos-Prieto, I
    Espinosa-Zuniga, A.
    Fernandez-Guasti, M.
    Moya-Cessa, H. M.
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (20):
  • [6] A quadratic time-dependent quantum harmonic oscillator
    F. E. Onah
    E. García Herrera
    J. A. Ruelas-Galván
    G. Juárez Rangel
    E. Real Norzagaray
    B. M. Rodríguez-Lara
    [J]. Scientific Reports, 13
  • [7] Quantum oscillator with fluctuating time-dependent frequency
    Ferrari, L
    [J]. PHYSICAL REVIEW A, 1998, 57 (04): : 2347 - 2356
  • [8] UNITARY TRANSFORMATIONS FOR THE TIME-DEPENDENT QUANTUM OSCILLATOR
    SELEZNYOVA, AN
    [J]. PHYSICAL REVIEW A, 1995, 51 (02): : 950 - 959
  • [9] A quadratic time-dependent quantum harmonic oscillator
    Onah, F. E.
    Herrera, E. Garcia
    Ruelas-Galvan, J. A.
    Juarez Rangel, G.
    Real Norzagaray, E.
    Rodriguez-Lara, B. M.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Wigner distribution function of superposed quantum states for a time-dependent oscillator-like Hamiltonian system
    Choi, Jeong Ryeol
    Song, Ji Nny
    Hong, Seong Ju
    [J]. JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2012, 6 (01)