DETERMINATION FOR THE 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LIPSCHITZ DOMAIN

被引:0
|
作者
Yang, Xin-Guang [1 ]
Hu, Meng [1 ]
Ma, To Fu [2 ]
Yuan, Jinyun [1 ,3 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[3] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Lipschitz domain; determining modes; Grashof number; DETERMINING MODES; DIRICHLET PROBLEM; VOLUME ELEMENTS; DIMENSION; DYNAMICS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number of determining modes is estimated for the 2D Navier-Stokes equations subject to an inhomogeneous boundary condition in Lipschitz domains by using an appropriate set of points in the configuration space to represent the flow by virtue of the Grashof number and the measure of Lipschitz boundary based on a stream function and some delicate estimates. The asymptotic determination via finite functionals for 2D autonomous Navier-Stokes equations in Lipschitz domains has been derived for the trajectories inside global attractor with finite Hausdorff dimension, which leads to this fluid flow reducing to a functional ordinary differential equation.
引用
收藏
页码:2301 / 2328
页数:28
相关论文
共 50 条
  • [1] Asymptotic Stability for the 2D Navier-Stokes Equations with Multidelays on Lipschitz Domain
    Zhang, Ling-Rui
    Yang, Xin-Guang
    Su, Ke-Qin
    MATHEMATICS, 2022, 10 (23)
  • [2] Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations
    Benwen LI
    Shangshang CHEN
    AppliedMathematicsandMechanics(EnglishEdition), 2015, 36 (08) : 1073 - 1090
  • [3] Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations
    Li, Benwen
    Chen, Shangshang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2015, 36 (08) : 1073 - 1090
  • [4] Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations
    Benwen Li
    Shangshang Chen
    Applied Mathematics and Mechanics, 2015, 36 : 1073 - 1090
  • [5] Dynamics of 2D Incompressible Non-autonomous Navier-Stokes Equations on Lipschitz-like Domains
    Yang, Xin-Guang
    Qin, Yuming
    Lu, Yongjin
    Ma, To Fu
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 2129 - 2183
  • [6] Stationary solution of the Navier-Stokes equations in a 2d bounded domain for incompressible flow with discontinuous density
    Santos, MM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (04): : 661 - 675
  • [7] Stationary solution of the Navier-Stokes equations in a 2d bounded domain for incompressible flow with discontinuous density
    M. M. Santos
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2002, 53 : 661 - 675
  • [8] Adaptive parallel multigrid solution of 2D incompressible Navier-Stokes equations
    Inst Algorithms + Scientific Comp, German Rsch Ctr Information Tech, Schloss Birlinghoven, Sankt Augushn D-53754, Germany
    Int J Numer Methods Fluids, 9 (875-892):
  • [9] Robustness of Pullback Attractors for 2D Incompressible Navier-Stokes Equations with Delay
    Su, Keqin
    Yang, Xinguang
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (01): : 25 - 46
  • [10] Enstrophy dissipation and vortex thinning for the incompressible 2D Navier-Stokes equations
    Jeong, In-Jee
    Yoneda, Tsuyoshi
    NONLINEARITY, 2021, 34 (04) : 1837 - 1853