Prognostic value analysis of cholesterol and cholesterol homeostasis related genes in breast cancer by Mendelian randomization and multi-omics machine learning

被引:1
|
作者
Wu, Haodong [1 ,2 ,3 ]
Wu, Zhixuan [1 ,2 ]
Ye, Daijiao [4 ]
Li, Hongfeng [1 ]
Dai, Yinwei [1 ]
Wang, Ziqiong [1 ]
Bao, Jingxia [1 ]
Xu, Yiying [1 ]
He, Xiaofei [4 ]
Wang, Xiaowu [2 ]
Dai, Xuanxuan [1 ]
机构
[1] Wenzhou Med Univ, Dept Breast Surg, Affiliated Hosp 1, Wenzhou, Peoples R China
[2] Wenzhou Med Univ, Dept Burns & Skin Repair Surg, Affiliated Hosp 3, Ruian, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Key Lab Clin Lab Diagnost, Minist Educ, Affiliated Hosp 1, Wenzhou, Peoples R China
[4] Wenzhou Med Univ, Med Res Ctr, Affiliated Hosp 1, Wenzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
Mendelian randomization; breast cancer; immune microenvironment; cholesterol homeostasis; prognosis prediction; machine learning method; TUMOR PROGRESSION; T-CELLS; NORMALIZATION; ANGIOGENESIS; ACTIVATION; MECHANISMS; SURVIVAL; THERAPY;
D O I
10.3389/fonc.2023.1246880
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: The high incidence of breast cancer (BC) prompted us to explore more factors that might affect its occurrence, development, treatment, and also recurrence. Dysregulation of cholesterol metabolism has been widely observed in BC; however, the detailed role of how cholesterol metabolism affects chemo-sensitivity, and immune response, as well as the clinical outcome of BC is unknown.Methods: With Mendelian randomization (MR) analysis, the potential causal relationship between genetic variants of cholesterol and BC risk was assessed first. Then we analyzed 73 cholesterol homeostasis-related genes (CHGs) in BC samples and their expression patterns in the TCGA cohort with consensus clustering analysis, aiming to figure out the relationship between cholesterol homeostasis and BC prognosis. Based on the CHG analysis, we established a CAG_score used for predicting therapeutic response and overall survival (OS) of BC patients. Furthermore, a machine learning method was adopted to accurately predict the prognosis of BC patients by comparing multi-omics differences of different risk groups.Results: We observed that the alterations in plasma cholesterol appear to be correlative with the venture of BC (MR Egger, OR: 0.54, 95% CI: 0.35-0.84, p<0.006). The expression patterns of CHGs were classified into two distinct groups(C1 and C2). Notably, the C1 group exhibited a favorable prognosis characterized by a suppressed immune response and enhanced cholesterol metabolism in comparison to the C2 group. In addition, high CHG score were accompanied by high performance of tumor angiogenesis genes. Interestingly, the expression of vascular genes (CDH5, CLDN5, TIE1, JAM2, TEK) is lower in patients with high expression of CHGs, which means that these patients have poorer vascular stability. The CAG_score exhibits robust predictive capability for the immune microenvironment characteristics and prognosis of patients(AUC=0.79). It can also optimize the administration of various first-line drugs, including AKT inhibitors VIII Imatinib, Crizotinib, Saracatinib, Erlotinib, Dasatinib, Rapamycin, Roscovitine and Shikonin in BC patients. Finally, we employed machine learning techniques to construct a multi-omics prediction model(Risklight),with an area under the feature curve (AUC) of up to 0.89.Conclusion: With the help of CAG_score and Risklight, we reveal the signature of cholesterol homeostasis-related genes for angiogenesis, immune responses, and the therapeutic response in breast cancer, which contributes to precision medicine and improved prognosis of BC.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Uncovering Prognosis-Related Genes and Pathways by Multi-Omics Analysis in Lung Cancer
    Asada, Ken
    Kobayashi, Kazuma
    Joutard, Samuel
    Tubaki, Masashi
    Takahashi, Satoshi
    Takasawa, Ken
    Komatsu, Masaaki
    Kaneko, Syuzo
    Sese, Jun
    Hamamoto, Ryuji
    BIOMOLECULES, 2020, 10 (04)
  • [32] A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs
    Yuan, Lin
    Zhao, Jing
    Sun, Tao
    Shen, Zhen
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [33] A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs
    Lin Yuan
    Jing Zhao
    Tao Sun
    Zhen Shen
    BMC Bioinformatics, 22
  • [34] Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer
    Wang, Jinsong
    Feng, Jia
    Chen, Xinyi
    Weng, Yiming
    Wang, Tong
    Wei, Jiayan
    Zhan, Yujie
    Peng, Min
    AGING-US, 2024, 16 (08): : 7331 - 7356
  • [35] Multi-omics analysis to identify susceptibility genes for colorectal cancer
    Yuan, Yuan
    Bao, Jiandong
    Chen, Zhishan
    Diez Villanueva, Anna
    Wen, Wanqing
    Wang, Fangqin
    Zhao, Dejian
    Fu, Xianghui
    Cai, Qiuyin
    Long, Jirong
    Shu, Xiao-Ou
    Zheng, Deyou
    Moreno, Victor
    Zheng, Wei
    Lin, Weiqiang
    Guo, Xingyi
    HUMAN MOLECULAR GENETICS, 2021, 30 (05) : 321 - 330
  • [36] Deep Learning for Integrated Analysis of Breast Cancer Subtype Specific Multi-omics Data
    Rakshit, Somnath
    Saha, Indrajit
    Chakraborty, Subha Shankar
    Plewczyski, Dariusz
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1917 - 1922
  • [37] InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data
    Yang, Hai
    Liu, Yawen
    Yang, Yijing
    Li, Dongdong
    Wang, Zhe
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [38] Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer
    Li, Jie
    Xu, Siyi
    Zhu, Feng
    Shen, Fei
    Zhang, Tianyi
    Wan, Xin
    Gong, Saisai
    Liang, Geyu
    Zhou, Yonglin
    CURRENT MEDICINAL CHEMISTRY, 2024, 31 (40) : 6692 - 6712
  • [39] Tumor Prognostic Risk Model Related to Monocytes/Macrophages in Hepatocellular Carcinoma Based on Machine Learning and Multi-Omics
    Xinliang Wan
    Yongchun Zou
    Qichun Zhou
    Qing Tang
    Gangxing Zhu
    Luyu Jia
    Xiaoyan Yu
    Handan Mo
    Xiaobing Yang
    Sumei Wang
    Biological Procedures Online, 27 (1)
  • [40] Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature
    Zhang, Xi
    Liu, Yang
    Zhang, Zhen
    Tan, Juan
    Zhang, Junjun
    Ou, Hao
    Li, Jie
    Song, Zewen
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9