Entanglement entropy and non-local duality: Quantum channels and quantum algebras

被引:2
|
作者
DeWolfe, Oliver
Higginbotham, Kenneth [1 ]
机构
[1] Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA
关键词
D O I
10.1016/j.aop.2022.169196
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the transformation of entanglement entropy under dualities, using the Kramers-Wannier duality present in the transverse field Ising model as our example. Entanglement entropy between local spin degrees of freedom is not generically preserved by the duality; instead, entangled states may be mapped to states with no local entanglement. To understand the fate of this entanglement, we consider two quantitative descriptions of degrees of freedom and their transformation under duality. The first involves Kraus operators implementing the partial trace as a quantum channel, while the second utilizes the algebraic approach to quantum mechanics, where degrees of freedom are encoded in subalgebras. Using both approaches, we show that entanglement of local degrees of freedom is not lost; instead it is transferred to non-local degrees of freedom by the duality transformation. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Non-local quantum superpositions of topological defects
    Jacek Dziarmaga
    Wojciech H. Zurek
    Michael Zwolak
    [J]. Nature Physics, 2012, 8 : 49 - 53
  • [42] Non-local quantum gates: a cavity-quantum-electrodynamics implementation
    Paternostro, M
    Kim, MS
    Palma, GM
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (13) : 2075 - 2094
  • [43] Holographic Entanglement Entropy of Semi-local Quantum Liquids
    Pang, Da-Wei
    Erdmenger, Johanna
    Zeller, Hansjoerg
    [J]. 1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 277 - 282
  • [44] Holographic entanglement entropy of semi-local quantum liquids
    Johanna Erdmenger
    Da-Wei Pang
    Hansjörg Zeller
    [J]. Journal of High Energy Physics, 2014
  • [45] Holographic entanglement entropy of semi-local quantum liquids
    Erdmenger, Johanna
    Pang, Da Wei
    Zeller, Hansjoerg
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [46] Entanglement oscillations in non-Markovian quantum channels
    Maniscalco, Sabrina
    Olivares, Stefano
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2007, 75 (06)
  • [47] Coding by Quantum Entanglement Entropy
    Skopec, Robert
    [J]. NEUROQUANTOLOGY, 2017, 15 (02) : 200 - 207
  • [48] Quantum entanglement and Kaniadakis entropy
    Ourabah, Kamel
    Hamici-Bendimerad, Amel Hiba
    Tribeche, Mouloud
    [J]. PHYSICA SCRIPTA, 2015, 90 (04)
  • [49] Detecting entanglement of quantum channels
    Li, Chaojian
    Wang, Bang-Hai
    Wu, Bujiao
    Yuan, Xiao
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (11)
  • [50] Quantum walk on the line: Entanglement and non-local initial conditions (vol 73, pg 042302, 2006)
    Abal, G.
    Siri, R.
    Romanelli, A.
    Donangelo, R.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):