Neural sensing and control in a kilometer-scale gravitational-wave observatory

被引:0
|
作者
Mukund, N. [1 ,2 ,3 ,4 ]
Lough, J. [1 ,2 ]
Bisht, A. [1 ,2 ]
Wittel, H. [1 ,2 ]
Nadji, S. [1 ,2 ]
Affeldt, C. [1 ,2 ]
Bergamin, F. [1 ,2 ]
Brinkmann, M. [1 ]
Kringel, V. [1 ,2 ]
Lueck, H. [1 ,2 ]
Weinert, M. [1 ,2 ]
Danzmann, K. [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Max Planck Inst Gravitationsphys, Albert Einstein Inst, Callinstr 38, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Grav Phys, Callinstr 38, D-30167 Hannover, Germany
[3] MIT, Laser Interferometer Gravitat Wave Observ LIGO, Cambridge, MA 02139 USA
[4] MIT, Natl Sci Fdn NSF Inst Artificial Intelligence & Fu, Cambridge, MA 02139 USA
基金
英国科学技术设施理事会; 美国国家科学基金会;
关键词
AUTOMATIC ALIGNMENT; ALGORITHMS;
D O I
10.1103/PhysRevApplied.20.064041
中图分类号
O59 [应用物理学];
学科分类号
摘要
Suspended optics in gravitational-wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both the circulating power and optomechanical photon squeezing, and thus decrease the astrophysical sensitivity to merging binaries. Traditional alignment techniques involve differential wave-front sensing using multiple quadrant photodiodes but are often bandwidth restricted and limited by the sensing noise. We present a successful implementation of neural-network-based sensing and control at a GW observatory and demonstrate low-frequency control of the signal-recycling mirror at the GEO 600 detector. Alignment information for three critical optics is simultaneously extracted from the interferometric dark-port camera images via a convolutional neural net-long short-term memory network architecture and is then used for multiple-input-multiple-output control using soft actor-critic-based deep reinforcement learning. The overall sensitivity improvement achieved using our scheme demonstrates the capabilities of deep learning as a viable tool for real-time sensing and control for current and next-generation GW interferometers.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Convolutional neural networks: A magic bullet for gravitational-wave detection?
    Gebhard, Timothy D.
    Kilbertus, Niki
    Harry, Ian
    Schoelkopf, Bernhard
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [42] Gravitational-wave surrogate models powered by artificial neural networks
    Khan, Sebastian
    Green, Rhys
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)
  • [43] Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
    Chua, Alvin J. K.
    Vallisneri, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [44] Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
    Dax, Maximilian
    Green, Stephen R.
    Gair, Jonathan
    Purrer, Michael
    Wildberger, Jonas
    Macke, Jakob H.
    Buonanno, Alessandra
    Scholkopf, Bernhard
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (17)
  • [45] An acoustical analogue of a galactic-scale gravitational-wave detector
    Lam, Michael T.
    Romano, Joseph D.
    Key, Joey S.
    Normandin, Marc
    Hazboun, Jeffrey S.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2018, 86 (10) : 755 - 764
  • [46] Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers
    Dooley, Katherine L.
    Arain, Muzammil A.
    Feldbaum, David
    Frolov, Valery V.
    Heintze, Matthew
    Hoak, Daniel
    Khazanov, Efim A.
    Lucianetti, Antonio
    Martin, Rodica M.
    Mueller, Guido
    Palashov, Oleg
    Quetschke, Volker
    Reitze, David H.
    Savage, R. L.
    Tanner, D. B.
    Williams, Luke F.
    Wu, Wan
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03):
  • [47] Cosmic Explorer: A Next-Generation Ground-Based Gravitational-Wave Observatory
    Hall, Evan D.
    [J]. GALAXIES, 2022, 10 (04):
  • [48] First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory
    Grote, H.
    Danzmann, K.
    Dooley, K. L.
    Schnabel, R.
    Slutsky, J.
    Vahlbruch, H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [49] Establishing significance of gravitational-wave signals from a single observatory in the PyCBC offline search
    Davies, Gareth S. Cabourn
    Harry, Ian W.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (21)
  • [50] Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing
    Carpenter, WA
    Shaw, PB
    Jones, L
    Weiss, R
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (04): : 1794 - 1799