Neural sensing and control in a kilometer-scale gravitational-wave observatory

被引:0
|
作者
Mukund, N. [1 ,2 ,3 ,4 ]
Lough, J. [1 ,2 ]
Bisht, A. [1 ,2 ]
Wittel, H. [1 ,2 ]
Nadji, S. [1 ,2 ]
Affeldt, C. [1 ,2 ]
Bergamin, F. [1 ,2 ]
Brinkmann, M. [1 ]
Kringel, V. [1 ,2 ]
Lueck, H. [1 ,2 ]
Weinert, M. [1 ,2 ]
Danzmann, K. [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Max Planck Inst Gravitationsphys, Albert Einstein Inst, Callinstr 38, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Grav Phys, Callinstr 38, D-30167 Hannover, Germany
[3] MIT, Laser Interferometer Gravitat Wave Observ LIGO, Cambridge, MA 02139 USA
[4] MIT, Natl Sci Fdn NSF Inst Artificial Intelligence & Fu, Cambridge, MA 02139 USA
基金
英国科学技术设施理事会; 美国国家科学基金会;
关键词
AUTOMATIC ALIGNMENT; ALGORITHMS;
D O I
10.1103/PhysRevApplied.20.064041
中图分类号
O59 [应用物理学];
学科分类号
摘要
Suspended optics in gravitational-wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both the circulating power and optomechanical photon squeezing, and thus decrease the astrophysical sensitivity to merging binaries. Traditional alignment techniques involve differential wave-front sensing using multiple quadrant photodiodes but are often bandwidth restricted and limited by the sensing noise. We present a successful implementation of neural-network-based sensing and control at a GW observatory and demonstrate low-frequency control of the signal-recycling mirror at the GEO 600 detector. Alignment information for three critical optics is simultaneously extracted from the interferometric dark-port camera images via a convolutional neural net-long short-term memory network architecture and is then used for multiple-input-multiple-output control using soft actor-critic-based deep reinforcement learning. The overall sensitivity improvement achieved using our scheme demonstrates the capabilities of deep learning as a viable tool for real-time sensing and control for current and next-generation GW interferometers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cryogenic suspension design for a kilometer-scale gravitational-wave detector
    Ushiba, Takafumi
    Akutsu, Tomotada
    Araki, Sakae
    Bajpai, Rishabh
    Chen, Dan
    Craig, Kieran
    Enomoto, Yutaro
    Hagiwara, Ayako
    Haino, Sadakazu
    Inoue, Yuki
    Izumi, Kiwamu
    Kimura, Nobuhiro
    Kumar, Rahul
    Michimura, Yuta
    Miyoki, Shinji
    Murakami, Iwao
    Namai, Yoshikazu
    Nakano, Masayuki
    Ohashi, Masatake
    Okutomi, Koki
    Shishido, Takaharu
    Shoda, Ayaka
    Somiya, Kentaro
    Suzuki, Toshikazu
    Takada, Suguru
    Takahashi, Masahiro
    Takahashi, Ryutaro
    Terashima, Shinichi
    Tomaru, Takayuki
    Travasso, Flavio
    Ueda, Ayako
    Vocca, Helios
    Yamada, Tomohiro
    Yamamoto, Kazuhiro
    Zeidler, Simon
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (08)
  • [2] GRAVITATIONAL-WAVE OBSERVATORY
    不详
    [J]. APPLIED OPTICS, 1990, 29 (18): : 2658 - 2658
  • [3] IceCube: A kilometer-scale neutrino observatory at the South pole
    Halzen, Francis
    [J]. HIGHLIGHTS OF ASTRONOMY, VOL 13, 2005, 13 : 949 - 950
  • [4] Gravitational-wave Lunar Observatory for Cosmology
    Jani, K.
    Loeb, A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (06):
  • [5] Upgrade complete for gravitational-wave observatory
    Kruesi, Liz
    [J]. PHYSICS WORLD, 2015, 28 (07) : 10 - 10
  • [6] The Laser Interferometer Gravitational-Wave Observatory LIGO
    Barish, BC
    [J]. FUNDAMENTAL PHYSICS IN SPACE, 2000, 25 (06): : 1165 - 1169
  • [7] Construction of KAGRA: an underground gravitational-wave observatory
    Akutsu, T.
    Ando, M.
    Araki, S.
    Araya, A.
    Arima, T.
    Aritomi, N.
    Asada, H.
    Aso, Y.
    Atsuta, S.
    Awai, K.
    Baiotti, L.
    Barton, M. A.
    Chen, D.
    Cho, K.
    Craig, K.
    DeSalvo, R.
    Doi, K.
    Eda, K.
    Enomoto, Y.
    Flaminio, R.
    Fujibayashi, S.
    Fujii, Y.
    Fujimoto, M. -K.
    Fukushima, M.
    Furuhata, T.
    Hagiwara, A.
    Haino, S.
    Harita, S.
    Hasegawa, K.
    Hasegawa, M.
    Hashino, K.
    Hayama, K.
    Hirata, N.
    Hirose, E.
    Ikenoue, B.
    Inoue, Y.
    Ioka, K.
    Ishizaki, H.
    Itoh, Y.
    Jia, D.
    Kagawa, T.
    Kaji, T.
    Kajita, T.
    Kakizaki, M.
    Kakuhata, H.
    Kamiizumi, M.
    Kanbara, S.
    Kanda, N.
    Kanemura, S.
    Kaneyama, M.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (01):
  • [8] INTERFEROMETRY Lagrange: The first gravitational-wave observatory?
    Wallace, John
    [J]. LASER FOCUS WORLD, 2012, 48 (01): : 28 - +
  • [9] LIGO: the Laser Interferometer Gravitational-Wave Observatory
    Abbott, B. P.
    Abbott, R.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Aso, Y.
    Aston, S.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballmer, S.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Behnke, B.
    Benacquista, M.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bilenko, I. A.
    Billingsley, G.
    Biswas, R.
    Black, E.
    Blackburn, J. K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bodiya, T. P.
    Bogue, L.
    Bork, R.
    Boschi, V.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Bridges, D. O.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
  • [10] First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory
    Lough, James
    Schreiber, Emil
    Bergamin, Fabio
    Grote, Hartmut
    Mehmet, Moritz
    Vahlbruch, Henning
    Affeldt, Christoph
    Brinkmann, Marc
    Bisht, Aparna
    Kringel, Volker
    Luck, Harald
    Mukund, Nikhil
    Nadji, Severin
    Sorazu, Borja
    Strain, Kenneth
    Weinert, Michael
    Danzmann, Karsten
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (04)