Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network

被引:1
|
作者
Peng, Yufei [1 ,2 ]
Guo, Yingya [1 ,2 ]
Hao, Run [1 ]
Lin, Junda [1 ]
机构
[1] Fuzhou Univ, Dept Comp & Data Sci, Fuzhou, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou, Peoples R China
来源
2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR | 2023年
关键词
Network Traffic Prediction; Attention Mechanism; Graph Neural Network; Temporal and Spatial; Encoder-Decoder;
D O I
10.1109/HPSR57248.2023.10148029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Network traffic prediction plays a significant role in network management. Previous network traffic prediction methods mainly focus on the temporal relationship between network traffic, and used time series models to predict network traffic, ignoring the spatial information contained in traffic data. Therefore, the prediction accuracy is limited, especially in long-term prediction. To improve the prediction accuracy of the dynamic network traffic in the long term, we propose an Attention-based Spatial-Temporal Graph Network (ASTGN) model for network traffic prediction to better capture both the temporal and spatial relations between the network traffic. Specifically, in ASTGN, we exploit an encoder-decoder architecture, where the encoder encodes the input network traffic and the decoder outputs the predicted network traffic sequences, integrating the temporal and spatial information of the network traffic data through the Spatio-Temporal Embedding module. The experimental results demonstrate the superiority of our proposed method ASTGN in long-term prediction.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] An effective spatial-temporal attention based neural network for traffic flow prediction
    Do, Loan N. N.
    Vu, Hai L.
    Vo, Bao Q.
    Liu, Zhiyuan
    Dinh Phung
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 108 : 12 - 28
  • [32] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [33] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [34] Attention-Based Spatial-Temporal Fusion Networks for Traffic Flow Prediction
    Wang, Jiaying
    Yang, Heng
    Shan, Jing
    Jiang, Junyi
    Song, Xiaoxu
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 500 - 511
  • [35] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116
  • [36] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [37] Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction
    Tian, Yuxin
    Zhang, Qiliang
    Li, Xiaomeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 125 - 136
  • [38] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [39] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [40] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103