Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images

被引:2
|
作者
Wen, Zhuoyu [1 ]
Lin, Yu-Hsuan [2 ]
Wang, Shidan [1 ]
Fujiwara, Naoto [3 ]
Rong, Ruichen [1 ]
Jin, Kevin W. [1 ]
Yang, Donghan M. [1 ]
Yao, Bo [1 ]
Yang, Shengjie [1 ]
Wang, Tao [1 ,4 ]
Xie, Yang [1 ,5 ,6 ]
Hoshida, Yujin [3 ]
Zhu, Hao [2 ,7 ]
Xiao, Guanghua [1 ,5 ,6 ]
机构
[1] Univ Texas Southwestern Med Ctr, Quantitat Biomed Res Ctr, Dept Populat & Data Sci, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr, Childrens Res Inst, Ctr Regenerat Sci & Med, Dept Pediat & Internal Med, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr, Dept Internal Med, Div Digest & Liver Dis, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr, Ctr Genet Host Def, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr, Hamon Ctr Regenerat Med, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr, Dept Bioinformat, Dallas, TX 75390 USA
[7] Univ Texas Southwestern Med Ctr, Childrens Res Inst Mouse Genome Engn Core, Dallas, TX 75390 USA
关键词
deep learning; hematoxylin-eosin (H&E) histopathology images; ploidy; liver; HEPATOCYTE PLOIDY; DNA-PLOIDY; LIVER; POLYPLOIDY; GROWTH;
D O I
10.3390/genes14040921
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Deep Learning Identifies FGFR Alterations from H&E Whole Slide Images in Bladder Cancer
    Och, Josh
    Osinski, Boleslaw
    Ingale, Kshitij
    Willis, Caleb
    Joshi, Rohan
    Beaubier, Nike
    Stumpe, Martin
    LABORATORY INVESTIGATION, 2023, 103 (03) : S783 - S784
  • [32] Deep learning-based transformation of H&E stained tissues into special stains
    de Haan, Kevin
    Zhang, Yijie
    Zuckerman, Jonathan E.
    Liu, Tairan
    Sisk, Anthony E.
    Diaz, Miguel F. P.
    Jen, Kuang-Yu
    Nobori, Alexander
    Liou, Sofia
    Zhang, Sarah
    Riahi, Rana
    Rivenson, Yair
    Wallace, W. Dean
    Ozcan, Aydogan
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [33] Deep Learning Classifier to Predict Cardiac Failure from Whole-Slide H&E Images
    Nirschl, Jeffrey
    Janowczyk, Andrew
    Peyster, Eliot
    Frank, Renee
    Margulies, Kenneth
    Feldman, Michael
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2017, 97 : 532A - 533A
  • [34] AUTOMATED STAGING OF T1 BLADDER CANCER USING DIGITAL PATHOLOGIC H&E IMAGES: A DEEP LEARNING APPROACH
    Niazi, Muhammad Khalid Khan
    Tavolara, Thomas
    Arole, Vidya
    Parwani, Anil
    Lee, Cheryl
    Gurcan, Metin
    JOURNAL OF UROLOGY, 2018, 199 (04): : E775 - E775
  • [35] Molecular classification of endometrial cancer from H&E stained slide images using supervised deep learning: a proof of concept
    Aguirre Neira, Fabiana Ines
    Rodriguez, V. E.
    Legoburu, A. A.
    Llanos, A. R.
    Carrera Salas, R.
    Jimenez Bolance, O.
    Ferreres Pinas, J. C.
    Costa Trachsel, I.
    VIRCHOWS ARCHIV, 2024, 485 : S47 - S47
  • [36] Deep learning-based transformation of H&E stained tissues into special stains
    Kevin de Haan
    Yijie Zhang
    Jonathan E. Zuckerman
    Tairan Liu
    Anthony E. Sisk
    Miguel F. P. Diaz
    Kuang-Yu Jen
    Alexander Nobori
    Sofia Liou
    Sarah Zhang
    Rana Riahi
    Yair Rivenson
    W. Dean Wallace
    Aydogan Ozcan
    Nature Communications, 12
  • [37] Deep Learning Based on Standard H&E Images of Primary Melanoma Tumors Identifies Patients at Risk for Visceral Recurrence and Death
    Kulkarni, Prathamesh M.
    Robinson, Eric J.
    Pradhan, Jaya Sarin
    Gartrell-Corrado, Robyn D.
    Rohr, Bethany R.
    Trager, Megan H.
    Geskin, Larisa J.
    Kluger, Harriet M.
    Wang, Pok Fai
    Acs, Balazs
    Rizk, Emanuelle M.
    Yang, Chen
    Mondal, Manas
    Moore, Michael R.
    Osman, Iman
    Phelps, Robert
    Horst, Basil A.
    Chen, Zhe S.
    Ferringer, Tammie
    Rimm, David L.
    Wang, Jing
    Saenger, Yvonne M.
    CLINICAL CANCER RESEARCH, 2020, 26 (05) : 1126 - 1134
  • [38] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [39] CompSegNet: An enhanced U-shaped architecture for nuclei segmentation in H&E histopathology images
    Traore, Mohamed
    Hancer, Emrah
    Samet, Refik
    Yildirim, Zeynep
    Nemati, Nooshin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97
  • [40] Deep learning-based tumor microenvironment cell types mapping from H&E images of lung adenocarcinoma using spatial transcriptomic data
    Choi, Hongyoon
    Na, Kwon Joong
    Koh, Jaemoon
    Kim, Young Tae
    CANCER RESEARCH, 2022, 82 (12)