Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range

被引:9
|
作者
Hata, Junichi [1 ,2 ,3 ,4 ,5 ]
Nakae, Ken [6 ,7 ]
Tsukada, Hiromichi [8 ,9 ]
Woodward, Alexander [10 ]
Haga, Yawara [2 ]
Iida, Mayu [1 ]
Uematsu, Akiko [2 ]
Seki, Fumiko [4 ]
Ichinohe, Noritaka [11 ]
Gong, Rui [10 ]
Kaneko, Takaaki [12 ]
Yoshimaru, Daisuke [2 ,3 ,4 ,5 ]
Watakabe, Akiya [13 ]
Abe, Hiroshi [13 ]
Tani, Toshiki [13 ]
Hamda, Hiro Taiyo [9 ,14 ]
Gutierrez, Carlos Enrique [9 ]
Skibbe, Henrik [15 ]
Maeda, Masahide [10 ]
Papazian, Frederic [10 ]
Hagiya, Kei [2 ]
Kishi, Noriyuki [2 ,3 ]
Ishii, Shin [7 ]
Doya, Kenji [9 ]
Shimogori, Tomomi [16 ]
Yamamori, Tetsuo [13 ,17 ,18 ]
Tanaka, Keiji [10 ]
Okano, Hirotaka James [2 ,5 ]
Okano, Hideyuki [2 ,3 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Human Hlth Sci, Tokyo, Japan
[2] RIKEN Ctr Brain Sci, Lab Marmoset Neural Architecture, Saitama, Japan
[3] Keio Univ, Dept Physiol, Sch Med, Tokyo, Japan
[4] Cent Inst Expt Anim, Live Anim Imaging Ctr, Kanagawa, Japan
[5] Jikei Univ, Div Regenerat Med, Sch Med, Tokyo, Japan
[6] Natl Inst Nat Sci, Exploratory Res Ctr Life & Living Syst, Aichi, Japan
[7] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[8] Chubu Univ, Ctr Math Sci & Artificial Intelligence, Aichi, Japan
[9] Okinawa Inst Sci & Technol Grad Univ, Neural Computat Unit, Okinawa, Japan
[10] RIKEN Ctr Brain Sci, Connectome Anal Unit, Saitama, Japan
[11] Natl Inst Neurosci, Dept Ultrastruct Res, Natl Ctr Neurol & Psychiat, Tokyo, Japan
[12] Kyoto Univ, Ctr Evolutionary Origins Human Behav, Aichi, Japan
[13] RIKEN Ctr Brain Sci, Lab Mol Anal Higher Brain Funct, Saitama, Japan
[14] Araya Inc, Res & Dev Dept, Tokyo, Japan
[15] RIKEN Ctr Brain Sci, Brain Image Anal Unit, Saitama, Japan
[16] RIKEN Ctr Brain Sci, Lab Mol Mech Brain Dev, Saitama, Japan
[17] RIKEN Ctr Brain Sci, Lab Hapt Percept & Cognit Physiol, Saitama, Japan
[18] Cent Inst Expt Anim, Dept Marmoset Biol & Med, Kanagawa, Japan
关键词
NONHUMAN-PRIMATES; TRAJECTORIES; MODELS;
D O I
10.1038/s41597-023-02121-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Recent advances in magnetic nanoparticle-based multi-modal imaging
    Shin, Tae-Hyun
    Choi, Youngseon
    Kim, Soojin
    Cheon, Jinwoo
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (14) : 4501 - 4516
  • [32] Multi-Modal Magnetic Resonance Imaging in the Acute and Sub-Acute Phase of Mild Traumatic Brain Injury: Can We See the Difference?
    Toth, Arnold
    Kovacs, Noemi
    Perlaki, Gabor
    Orsi, Gergely
    Aradi, Mihaly
    Komaromy, Hedvig
    Ezer, Erzsebet
    Bukovics, Peter
    Farkas, Orsolya
    Janszky, Jozsef
    Doczi, Tamas
    Buki, Andras
    Schwarcz, Attila
    JOURNAL OF NEUROTRAUMA, 2013, 30 (01) : 2 - 10
  • [33] An Integrated Low-Power Multi-Modal Wide-Dynamic-Range Potentiostat
    Liang, Jifu
    Tang, Xinyao
    Mandal, Soumyajit
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 562 - 565
  • [34] Multi-modal flexible and inexpensive plasmonic metasurface for wide range of refractive index sensing
    Biswas, Vaswati
    Vijaya, R.
    JOURNAL OF PHYSICS-PHOTONICS, 2024, 6 (04):
  • [35] Automatic classification of first-episode, drug-naive schizophrenia with multi-modal magnetic resonance imaging
    Yang, Yongzhe
    Zhang, Yue
    Wu, Fengchun
    Lu, Xiaobing
    Ning, Yuping
    Huang, Biao
    Du, Xin
    Li, Chengwei
    Wang, Kaixi
    Wu, Xiaoming
    Wu, Kai
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2017, 34 (05): : 674 - 680
  • [36] Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features
    Ning, Zhenyuan
    Luo, Jiaxiu
    Xiao, Qing
    Cai, Longmei
    Chen, Yuting
    Yu, Xiaohui
    Wang, Jian
    Zhang, Yu
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (04)
  • [37] A Dirty Multi-task Learning Method for Multi-modal Brain Imaging Genetics
    Du, Lei
    Liu, Fang
    Liu, Kefei
    Yao, Xiaohui
    Risacher, Shannon L.
    Han, Junwei
    Guo, Lei
    Saykin, Andrew J.
    Shen, Li
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 447 - 455
  • [38] Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method
    Sun, Jun
    Xu, Siyao
    Guo, Yiding
    Ding, Jinli
    Zhuo, Zhizheng
    Zhou, Dabiao
    Liu, Yaou
    ACTA RADIOLOGICA, 2024, : 1257 - 1264
  • [39] Neurovascular coupling dysfunction in high myopia patients: Evidence from a multi-modal magnetic resonance imaging analysis
    Zhang, Xiaopan
    Liu, Liang
    Yang, Fan
    Liu, Zijun
    Jin, Xuemin
    Han, Shaoqiang
    Zhang, Yong
    Cheng, Jingliang
    Wen, Baohong
    JOURNAL OF NEURORADIOLOGY, 2024, 51 (03) : 281 - 289
  • [40] Multi-modal Brain Age Estimation: A Comparative Study Confirms the Importance of Microstructure
    Salih, Ahmed
    Galazzo, Ilaria Boscolo
    Jaggi, Akshay
    Estabragh, Zahra Raisi
    Petersen, Steffen E.
    Lekadir, Karim
    Radeva, Petia
    Menegaz, Gloria
    COMPUTATIONAL DIFFUSION MRI, 2021, : 239 - 250