Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range

被引:9
|
作者
Hata, Junichi [1 ,2 ,3 ,4 ,5 ]
Nakae, Ken [6 ,7 ]
Tsukada, Hiromichi [8 ,9 ]
Woodward, Alexander [10 ]
Haga, Yawara [2 ]
Iida, Mayu [1 ]
Uematsu, Akiko [2 ]
Seki, Fumiko [4 ]
Ichinohe, Noritaka [11 ]
Gong, Rui [10 ]
Kaneko, Takaaki [12 ]
Yoshimaru, Daisuke [2 ,3 ,4 ,5 ]
Watakabe, Akiya [13 ]
Abe, Hiroshi [13 ]
Tani, Toshiki [13 ]
Hamda, Hiro Taiyo [9 ,14 ]
Gutierrez, Carlos Enrique [9 ]
Skibbe, Henrik [15 ]
Maeda, Masahide [10 ]
Papazian, Frederic [10 ]
Hagiya, Kei [2 ]
Kishi, Noriyuki [2 ,3 ]
Ishii, Shin [7 ]
Doya, Kenji [9 ]
Shimogori, Tomomi [16 ]
Yamamori, Tetsuo [13 ,17 ,18 ]
Tanaka, Keiji [10 ]
Okano, Hirotaka James [2 ,5 ]
Okano, Hideyuki [2 ,3 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Human Hlth Sci, Tokyo, Japan
[2] RIKEN Ctr Brain Sci, Lab Marmoset Neural Architecture, Saitama, Japan
[3] Keio Univ, Dept Physiol, Sch Med, Tokyo, Japan
[4] Cent Inst Expt Anim, Live Anim Imaging Ctr, Kanagawa, Japan
[5] Jikei Univ, Div Regenerat Med, Sch Med, Tokyo, Japan
[6] Natl Inst Nat Sci, Exploratory Res Ctr Life & Living Syst, Aichi, Japan
[7] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[8] Chubu Univ, Ctr Math Sci & Artificial Intelligence, Aichi, Japan
[9] Okinawa Inst Sci & Technol Grad Univ, Neural Computat Unit, Okinawa, Japan
[10] RIKEN Ctr Brain Sci, Connectome Anal Unit, Saitama, Japan
[11] Natl Inst Neurosci, Dept Ultrastruct Res, Natl Ctr Neurol & Psychiat, Tokyo, Japan
[12] Kyoto Univ, Ctr Evolutionary Origins Human Behav, Aichi, Japan
[13] RIKEN Ctr Brain Sci, Lab Mol Anal Higher Brain Funct, Saitama, Japan
[14] Araya Inc, Res & Dev Dept, Tokyo, Japan
[15] RIKEN Ctr Brain Sci, Brain Image Anal Unit, Saitama, Japan
[16] RIKEN Ctr Brain Sci, Lab Mol Mech Brain Dev, Saitama, Japan
[17] RIKEN Ctr Brain Sci, Lab Hapt Percept & Cognit Physiol, Saitama, Japan
[18] Cent Inst Expt Anim, Dept Marmoset Biol & Med, Kanagawa, Japan
关键词
NONHUMAN-PRIMATES; TRAJECTORIES; MODELS;
D O I
10.1038/s41597-023-02121-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique that is useful for identifying normal developmental and aging processes and for data sharing. Marmosets have a relatively shorter life expectancy than other primates, including humans, because they grow and age faster. Therefore, the common marmoset model is effective in aging research. The current study investigated the aging process of the marmoset brain and provided an open MRI database of marmosets across a wide age range. The Brain/MINDS Marmoset Brain MRI Dataset contains brain MRI information from 216 marmosets ranging in age from 1 and 10 years. At the time of its release, it is the largest public dataset in the world. It also includes multi-contrast MRI images. In addition, 91 of 216 animals have corresponding high-resolution ex vivo MRI datasets. Our MRI database, available at the Brain/MINDS Data Portal, might help to understand the effects of various factors, such as age, sex, body size, and fixation, on the brain. It can also contribute to and accelerate brain science studies worldwide.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range
    Junichi Hata
    Ken Nakae
    Hiromichi Tsukada
    Alexander Woodward
    Yawara Haga
    Mayu Iida
    Akiko Uematsu
    Fumiko Seki
    Noritaka Ichinohe
    Rui Gong
    Takaaki Kaneko
    Daisuke Yoshimaru
    Akiya Watakabe
    Hiroshi Abe
    Toshiki Tani
    Hiro Taiyo Hamda
    Carlos Enrique Gutierrez
    Henrik Skibbe
    Masahide Maeda
    Frederic Papazian
    Kei Hagiya
    Noriyuki Kishi
    Shin Ishii
    Kenji Doya
    Tomomi Shimogori
    Tetsuo Yamamori
    Keiji Tanaka
    Hirotaka James Okano
    Hideyuki Okano
    Scientific Data, 10
  • [2] Multi-modal magnetic resonance imaging in a mouse model of concussion
    Xuan Vinh To
    Fatima A. Nasrallah
    Scientific Data, 8
  • [3] Multi-modal magnetic resonance imaging in a mouse model of concussion
    To, Xuan Vinh
    Nasrallah, Fatima A.
    SCIENTIFIC DATA, 2021, 8 (01)
  • [4] Discussion on the Application of Multi-modal Magnetic Resonance Imaging Fusion in Schizophrenia
    Xiaohong Wang
    Na Zhao
    Jingjing Shi
    Yuhua Wu
    Jun Liu
    Qiang Xiao
    Jian Hu
    Journal of Medical Systems, 2019, 43
  • [5] Discussion on the Application of Multi-modal Magnetic Resonance Imaging Fusion in Schizophrenia
    Wang, Xiaohong
    Zhao, Na
    Shi, Jingjing
    Wu, Yuhua
    Liu, Jun
    Xiao, Qiang
    Hu, Jian
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (05)
  • [6] Baseline Structural Connectomics Data of Healthy Brain Development Assessed with Multi-Modal Magnetic Resonance Imaging
    Mattie, David
    Fang, Zihang
    Takahashi, Emi
    Pena Castillo, Lourdes
    Levman, Jacob
    INFORMATION, 2024, 15 (01)
  • [7] A review of multi-modal magnetic resonance imaging studies on perimenopausal brain: a hint towards neural heterogeneity
    Lu, Weizhao
    Sun, Yuanyuan
    Gao, Hui
    Qiu, Jianfeng
    EUROPEAN RADIOLOGY, 2023, 33 (08) : 5282 - 5297
  • [8] A review of multi-modal magnetic resonance imaging studies on perimenopausal brain: a hint towards neural heterogeneity
    Weizhao Lu
    Yuanyuan Sun
    Hui Gao
    Jianfeng Qiu
    European Radiology, 2023, 33 : 5282 - 5297
  • [9] Brain Structure and Function Associated with a History of Sport Concussion: A Multi-Modal Magnetic Resonance Imaging Study
    Churchill, Nathan
    Hutchison, Michael
    Richards, Doug
    Leung, General
    Graham, Simon
    Schweizer, Tom A.
    JOURNAL OF NEUROTRAUMA, 2017, 34 (04) : 765 - 771
  • [10] Insights into cardiac and vascular remodelling in athletes by multi-modal magnetic resonance imaging
    Petersen, S
    Neubauer, S
    Channon, K
    HEART, 2006, 92 : A104 - A104