RETRACTED: Data-driven EUR for multistage hydraulically fractured wells in shale formation using different machine learning methods (Retracted Article)

被引:2
|
作者
Ibrahim, Ahmed Farid [1 ,2 ]
Alarifi, Sulaiman A. [1 ,2 ]
Elkatatny, Salaheldin [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Petr Engn & Geosci, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Ctr Integrat Petr Res, Dhahran 31261, Saudi Arabia
关键词
Niobrara shale formation; Estimated ultimate recovery; Artificial neural networks; Random forest; Hydraulically fractured wells; GAS-RESERVOIRS; TIGHT GAS;
D O I
10.1007/s13202-022-01602-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposes the use of different machine learning techniques to predict the estimated ultimate recovery (EUR) as a function of the hydraulic fracturing design. A set of data includes 200 well production data, and completion designs were collected from oil production wells in the Niobrara shale formation. The completion design parameters include the lateral length, the number of stages, the total injected proppant and slurry volumes, and the maximum treating pressure measured during the fracturing operations. The data set was randomly split into training and testing with a ratio of 75:25. Different machine learning methods were to predict EUR from the completion design including linear regression, random forest (RF), and decision tree (DT) in addition to gradient boosting regression (GBR). EUR prediction from the completion data showed a low accuracy. As result, an intermediate step of estimating the well IP30 (the initial well production rate for the first month) from the completion data was carried out; then, the IP30 and the completion design were used as input parameters to predict the EUR. The linear regression showed some linear relationship between the output and the inputs, where the EUR can be predicted with a linear relationship with an R-value of 0.84. In addition, a linear correlation was developed based on the linear regression model. Moreover, the other ML tools including RF, DT, and GBR presented high accuracy of EUR prediction with correlation coefficient (R) values between actual and predicted EUR from the ML model higher than 0.9. This study provides ML application with an empirical correlation to predict the EUR from the completion design parameters at an early time without the need for complex numerical simulation analysis. Unlike the available empirical DCA models that require several months of production to build a sound prediction of EUR, the main advantage of the developed models in this study is that it requires only an initial flow rate along with the completion design to predict EUR with high certainty.
引用
收藏
页码:1123 / 1134
页数:12
相关论文
共 50 条
  • [31] RETRACTED: Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions (Retracted Article)
    Javeed, Ashir
    Khan, Shafqat Ullah
    Ali, Liaqat
    Ali, Sardar
    Imrana, Yakubu
    Rahman, Atiqur
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [32] Impact Damage Localization in Composite Structures Using Data-Driven Machine Learning Methods
    Tang, Can
    Zhou, Yujie
    Song, Guoqian
    Hao, Wenfeng
    MATERIALS, 2025, 18 (02)
  • [33] Different data-driven prediction of global ionospheric TEC using deep learning methods
    Tang, Jun
    Ding, Mingfei
    Yang, Dengpan
    Fan, Cihang
    Khonsari, Nasim
    Mao, Wenfei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [34] RETRACTED ARTICLE: Study on metal mine detection from underwater sonar images using data mining and machine learning techniques
    Venkataraman Padmaja
    V. Rajendran
    P. Vijayalakshmi
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 5083 - 5092
  • [35] RETRACTED: CT-ML: Diagnosis of Breast Cancer Based on Ultrasound Images and Time-Dependent Feature Extraction Methods Using Contourlet Transformation and Machine Learning (Retracted Article)
    Masjidi, Behnam Hajipour Khire
    Bahmani, Soufia
    Sharifi, Fatemeh
    Peivandi, Mohammad
    Khosravani, Mohammad
    Mohammed, Adil Hussein
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [36] Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods
    Almaghrebi, Ahmad
    Aljuheshi, Fares
    Rafaie, Mostafa
    James, Kevin
    Alahmad, Mahmoud
    ENERGIES, 2020, 13 (16)
  • [37] Data-driven fault detection and diagnosis for packaged rooftop units using statistical machine learning classification methods
    Ebrahimifakhar, Amir
    Kabirikopaei, Adel
    Yuill, David
    ENERGY AND BUILDINGS, 2020, 225
  • [38] Data-Driven Approach for Intelligent Classification of Tunnel Surrounding Rock Using Integrated Fractal and Machine Learning Methods
    Ma, Junjie
    Li, Tianbin
    Shirani Faradonbeh, Roohollah
    Sharifzadeh, Mostafa
    Wang, Jianfeng
    Huang, Yuyang
    Ma, Chunchi
    Peng, Feng
    Zhang, Hang
    FRACTAL AND FRACTIONAL, 2024, 8 (12)
  • [39] Data-Driven State of Charge Estimation of Li-ion Batteries using Supervised Machine Learning Methods
    Li, Yichun
    Maleki, Mina
    Banitaan, Shadi
    Chen, Mingzuoyang
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 873 - 878
  • [40] Data-driven total organic carbon prediction using feature selection methods incorporated in an automated machine learning framework
    Macedo, Bruno da Silva
    Wayo, Dennis Delali Kwesi
    Campos, Deivid
    De Santis, Rodrigo Barbosa
    Martinho, Alfeu Dias
    Yaseen, Zaher Mundher
    Saporetti, Camila Martins
    Goliatt, Leonardo
    SCIENTIFIC REPORTS, 2025, 15 (01):