Fabry-Perot interference enhanced transverse magneto-optical Kerr effect in Ce:YIG nanopore array on an anodic aluminum oxide template

被引:4
|
作者
Zhang, Weiwei [1 ,2 ]
Lu, Yao [3 ]
An, Kang [4 ,5 ]
机构
[1] Hebei GEO Univ, Sch Math & Phys, Shijiazhuang 050031, Peoples R China
[2] Hebei GEO Univ, Hebei Key Lab Optoelect Informat & Geo Detect Tech, Shijiazhuang 050031, Peoples R China
[3] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[4] North China Univ Technol, Sch Mech & Mat Engn, Beijing 100144, Peoples R China
[5] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528399, Peoples R China
关键词
Fabry-Perot interference; transverse magneto-optical Kerr effect; anodic aluminum oxide template; MAGNETOPLASMONIC CRYSTALS; PERFORMANCE; BOOST;
D O I
10.1088/2040-8986/ac9700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The all-dielectric magneto-optical (MO) structure has garnered considerable interest due to its enhanced MO effect and low ohmic loss compared to the magnetoplasmonic structure. In this study, the effect of Fabry-Perot (F-P) interference on the enhancement of the transverse magneto-optical Kerr effect (T-MOKE) as well as sensing performance is theoretically investigated in a dielectric MO structure composed of cerium-substituted yttrium iron garnet (Ce:YIG) nanopore array coating a nanoporous anodic aluminum oxide (AAO) film standing on an aluminum sheet referred to as the AAO/Al template. The system is particularly interesting because the MO response is significantly enhanced in the position of the F-P interference, in which the T-MOKE signal is close to a 5-fold increase compared with the reference Ce:YIG film. Additionally, the sensing performance shows that the all-dielectric nanopore-based system proposed here provides an alternative to fabricating gas and solution detectors with low ohmic loss.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] Surface Plasmon and Fabry-Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons
    Chen Tuo
    Lu Xuan-Hui
    CHINESE PHYSICS LETTERS, 2015, 32 (02)
  • [2] Surface Plasmon and Fabry-Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons
    陈拓
    陆璇辉
    Chinese Physics Letters, 2015, 32 (02) : 70 - 73
  • [3] Surface Plasmon and Fabry-Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons
    陈拓
    陆璇辉
    Chinese Physics Letters, 2015, (02) : 70 - 73
  • [4] Magneto-optical Kerr effect of structured magnetic films on anodic aluminum oxide template
    Qu, Xin
    Guo, Hong
    Wang, Hai
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2014, 43 (09): : 2292 - 2296
  • [5] Polar Kerr effect and perpendicular magnetic anisotropy in Fabry-Perot cavity containing CoPt/AZO magneto-optical interference layer
    Yamane, H.
    Yasukawa, Y.
    Kobayashi, M.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (20)
  • [6] Plasmonically Enhanced Transverse Magneto-Optical Kerr Effect
    Chin, Jessie Y.
    Kreilkamp, Lars E.
    Belotelov, Vladimir I.
    Neutzner, Stefanie
    Dregely, Daniel
    Wehlus, Thomas
    Akimov, Ilya A.
    Stritzker, Bernd
    Bayer, Manfred
    Giessen, Harald
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [7] Enhanced transverse magneto-optical Kerr effect using ferromagnetic metal perforated with nanopore arrays
    Zhang, Weiwei
    Du, Guoqiang
    Chen, Hongming
    An, Kang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (14) : 9796 - 9799
  • [8] Surface plasmon resonance enhanced transverse magneto-optical Kerr effect and the detection performance of nanopore arrays
    Zhang, Weiwei
    Yao, Haizi
    Lu, Yao
    JOURNAL OF OPTICS, 2022, 24 (03)
  • [9] Transverse magneto-optical behavior of nanoporous ferromagnetic film based on anodic aluminum oxide/aluminum template and its sensing application
    Du, Guoqiang
    Zheng, Pingping
    Liu, Na
    Liu, Zhifeng
    Zhang, Lin
    Zhang, Weiwei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (32) : 21331 - 21335
  • [10] Transverse magneto-optical Kerr effect enhanced at the bound states in the continuum
    Zakharov, V. A.
    Poddubny, A. N.
    PHYSICAL REVIEW A, 2020, 101 (04)