Low-temperature electrolytes for electrochemical energy storage devices: bulk and interfacial properties

被引:1
|
作者
Yang, Long [1 ]
Chen, Ming [1 ,2 ]
Wu, Taizheng [1 ]
Niu, Liang [1 ]
Zeng, Liang [1 ]
Feng, Guang [1 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Interdisciplinary Res Math & Appl Sci, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Nano Interface Ctr Energy, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
来源
FLEXIBLE AND PRINTED ELECTRONICS | 2023年 / 8卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
low-temperature electrolyte; antifreeze strategy; supercapacitor; battery; LITHIUM-ION BATTERY; HIGH-VOLTAGE; SUPERCAPACITOR ELECTROLYTES; AQUEOUS-ELECTROLYTE; LIQUID ELECTROLYTES; PROPYLENE CARBONATE; MOLECULAR-DYNAMICS; SOLVENT MIXTURE; PORE-SIZE; PERFORMANCE;
D O I
10.1088/2058-8585/acf943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Structure and properties of chromium coatings electroplated from low-temperature electrolytes
    Savochkina, IE
    Khaldeev, GV
    [J]. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1998, 71 (06) : 1065 - 1067
  • [32] ELECTROCHEMICAL ENERGY TRANSFORMATION IN LOW-TEMPERATURE FUEL-CELLS
    EWE, H
    JUSTI, EW
    [J]. CHEMIKER-ZEITUNG, 1973, 97 (09): : 496 - 501
  • [33] Properties of Low-Temperature Melting Electrolytes for the Aluminum Electrolysis Process: A Review
    Cassayre, Laurent
    Palau, Patrice
    Chamelot, Pierre
    Massot, Laurent
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (11): : 4549 - 4560
  • [34] Computational Analysis of Sensible Energy Storage for Low-Temperature Application
    Roy, Sujit
    Das, Biplab
    Biswas, Agnimitra
    Debnath, Biplab Kumar
    [J]. ADVANCES IN MECHANICAL ENGINEERING, ICRIDME 2018, 2020, : 1315 - 1329
  • [35] A low-temperature glide cycle for pumped thermal energy storage
    Koen, Antoine
    Farres-Antunez, Pau
    Macnaghten, James
    White, Alexander
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 42
  • [36] Electrochemical Nanowire Devices for Energy Storage
    Mai, Liqiang
    Wei, Qiulong
    Tian, Xiaocong
    Zhao, Yunlong
    An, Qinyou
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (01) : 10 - 15
  • [37] Stretchable electrochemical energy storage devices
    Mackanic, David G.
    Chang, Ting-Hsiang
    Huang, Zhuojun
    Cui, Yi
    Bao, Zhenan
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (13) : 4466 - 4495
  • [38] Graphdiyne for Electrochemical Energy Storage Devices
    Shen Xiangyan
    He Jianjiang
    Wang Ning
    Huang Changshui
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (09) : 1029 - 1047
  • [39] Interfacial processes in energy storage and conversion devices
    Tavassol, Hadi
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [40] Energy Storage for the Energy Transition: Salt Hydrate Based Low-Temperature Latent Heat Storage
    Rathgeber, Christoph
    Helm, Martin
    Hiebler, Stefan
    [J]. CHEMIE INGENIEUR TECHNIK, 2018, 90 (1-2) : 193 - 200