Low-temperature electrolytes for electrochemical energy storage devices: bulk and interfacial properties

被引:1
|
作者
Yang, Long [1 ]
Chen, Ming [1 ,2 ]
Wu, Taizheng [1 ]
Niu, Liang [1 ]
Zeng, Liang [1 ]
Feng, Guang [1 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Interdisciplinary Res Math & Appl Sci, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Nano Interface Ctr Energy, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
来源
FLEXIBLE AND PRINTED ELECTRONICS | 2023年 / 8卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
low-temperature electrolyte; antifreeze strategy; supercapacitor; battery; LITHIUM-ION BATTERY; HIGH-VOLTAGE; SUPERCAPACITOR ELECTROLYTES; AQUEOUS-ELECTROLYTE; LIQUID ELECTROLYTES; PROPYLENE CARBONATE; MOLECULAR-DYNAMICS; SOLVENT MIXTURE; PORE-SIZE; PERFORMANCE;
D O I
10.1088/2058-8585/acf943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Liquefied gas electrolytes for electrochemical energy storage devices
    Rustomji, Cyrus S.
    Yang, Yangyuchen
    Kim, Tae Kyoung
    Mac, Jimmy
    Kim, Young Jin
    Caldwell, Elizabeth
    Chung, Hyeseung
    Meng, Shirley
    [J]. SCIENCE, 2017, 356 (6345)
  • [2] Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices
    Kim, Eunhwan
    Han, Juyeon
    Ryu, Seokgyu
    Choi, Youngkyu
    Yoo, Jeeyoung
    [J]. MATERIALS, 2021, 14 (14)
  • [3] Safety regulation of gel electrolytes in electrochemical energy storage devices
    Yu, Dan
    Li, Xinyue
    Xu, Jialiang
    [J]. SCIENCE CHINA-MATERIALS, 2019, 62 (11) : 1556 - 1573
  • [4] LOW-TEMPERATURE ENERGY-STORAGE
    TAMME, R
    [J]. CHEMTECH, 1987, 17 (08) : 496 - 500
  • [5] Boosting Low-Temperature Resistance of Energy Storage Devices by Photothermal Conversion Effects
    Yu, Fei
    Li, Jialun
    Jiang, Yi
    Wang, Liying
    Yang, Xijia
    Li, Xuesong
    Lu, Wei
    Sun, Xiaojuan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 23400 - 23407
  • [6] The Applications of Water-in-Salt Electrolytes in Electrochemical Energy Storage Devices
    Liang, Tingting
    Hou, Ruilin
    Dou, Qingyun
    Zhang, Hongzhang
    Yan, Xingbin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (03)
  • [7] Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices
    Wang, Faxing
    Zhang, Panpan
    Wang, Gang
    Nia, Ali Shaygan
    Yu, Minghao
    Feng, Xinliang
    [J]. SMALL SCIENCE, 2022, 2 (02):
  • [8] Electrolytes for electrochemical energy storage
    Xia, Lan
    Yu, Linpo
    Hu, Di
    Chen, George Z.
    [J]. MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (04) : 584 - 618
  • [9] ELECTROCHEMICAL CHARACTERIZATION OF A CLASS OF LOW-TEMPERATURE CONDUCTING POLYMER ELECTROLYTES
    PANTALONI, S
    PASSERINI, S
    CROCE, F
    SCROSATI, B
    ROGGERO, A
    ANDREI, M
    [J]. ELECTROCHIMICA ACTA, 1989, 34 (05) : 635 - 640
  • [10] An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices
    Chang, Nana
    Li, Tianyu
    Li, Rui
    Wang, Shengnan
    Yin, Yanbin
    Zhang, Huamin
    Li, Xianfeng
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3527 - 3535