Extension of a Unique Solution in Generalized Neutrosophic Cone Metric Spaces

被引:0
|
作者
Ishtiaq, Umar [1 ]
Asif, Muhammad [2 ]
Hussain, Aftab [3 ]
Ahmad, Khaleel [4 ]
Saleem, Iqra [4 ]
Al Sulami, Hamed [3 ]
机构
[1] Univ Management & Technol, Off Res Innovat & Commercializat, Lahore 54000, Pakistan
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[4] Bahauddin Zakariya Univ, Dept Math, Multan Sub Campus Vehari, Vehari 61100, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
cone metric space; intuitionistic fuzzy metric space; contraction mappings; fixed point; generalized cone metric space; FIXED-POINT THEOREMS;
D O I
10.3390/sym15010094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to solve issues that arise in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization issues, equilibrium problems, complementarity issues, selection and matching problems, and issues proving the existence of solutions to integral and differential equations, fixed point theory provides vital tools. In this study, we discuss topological structure and several fixed-point theorems in the context of generalized neutrosophic cone metric spaces. In these spaces, the symmetric properties play an important role. We examine the existence and a uniqueness of a solution by utilizing new types of contraction mappings under some circumstances. We provide an example in which we show the existence and a uniqueness of a solution by utilizing our main result. These results are more generalized in the existing literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Results with cone metric spaces
    Bhardwaj, Ramakant
    Khaindait, Sneha. A.
    Komal, Somayya
    Sharma, Vipin
    Kabir, Qazi Aftab
    Konar, Pulak
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6987 - 6990
  • [42] On Equivalent Cone Metric Spaces
    Ö. Ölmez
    S. Aytar
    Ukrainian Mathematical Journal, 2014, 65 : 1898 - 1903
  • [43] Fuzzy cone metric spaces
    Oner, Tarkan
    Kandemir, Mustafa Burc
    Tanay, Bekir
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 610 - 616
  • [44] On paracompactness in cone metric spaces
    Sonmez, Ayse
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 494 - 497
  • [45] Neutrosophic Triplet Partial Bipolar Metric Spaces
    Şahin, Memet
    Kargın, Abdullah
    Uz, Merve Sena
    Neutrosophic Sets and Systems, 2020, 33 : 297 - 313
  • [46] The Approximate Solution for Generalized Proximal Contractions in Complete Metric Spaces
    Koma, Somayya
    Gopal, Dhananjay
    Khojasteh, Farhsid
    Sitthithakerngkiet, Kanokwan
    Kumam, Poom
    THAI JOURNAL OF MATHEMATICS, 2019, 17 : 200 - 212
  • [47] Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces
    Mehmood, A.
    Nadeem, F.
    Nordo, G.
    Zamir, M.
    Park, C.
    Kalsoom, H.
    Jabeen, S.
    Khan, M., I
    NEUTROSOPHIC SETS AND SYSTEMS, 2020, 32 : 38 - 51
  • [48] On Fixed Point Theory for Generalized Contractions in Cone Metric Spaces Via Scalarizing
    Zangenehmehr, Parastoo
    Farajzadesh, Ali
    Vaezpour, Sayed Mansour
    CHIANG MAI JOURNAL OF SCIENCE, 2015, 42 (04): : 1038 - 1043
  • [49] Generalized fractal transforms and self-similar objects in cone metric spaces
    Kunze, H.
    La Torre, D.
    Mendivil, F.
    Vrscay, E. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1761 - 1769
  • [50] Common fixed point theorems on generalized distance in ordered cone metric spaces
    Cho, Yeol Je
    Saadati, Reza
    Wang, Shenghua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 1254 - 1260