Transcendental Properties of Entropy-Constrained Sets

被引:3
|
作者
Blakaj, Vjosa [1 ]
Wolf, Michael M. [2 ]
机构
[1] Tech Univ Munich, Dept Math, Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Munich, Germany
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 01期
关键词
D O I
10.1007/s00023-022-01227-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For information-theoretic quantities with an asymptotic operational characterization, the question arises whether an alternative single-shot characterization exists, possibly including an optimization over an ancilla system. If the expressions are algebraic and the ancilla is finite, this leads to semialgebraic level sets. In this work, we provide a criterion for disproving that a set is semialgebraic based on an analytic continuation of the Gauss map. Applied to the von Neumann entropy, this shows that its level sets are nowhere semialgebraic in dimension d >= 3, ruling out algebraic single-shot characterizations with finite ancilla (e.g., via catalytic transformations). We show similar results for related quantities, including the relative entropy, and discuss under which conditions entropy values are transcendental, algebraic, or rational.
引用
收藏
页码:349 / 362
页数:14
相关论文
共 50 条
  • [31] Performance of low rate entropy-constrained scalar quantizers
    Marco, D
    Neuhoff, DL
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 495 - 495
  • [32] Entropy-constrained design of quadtree video coding schemes
    Wiegand, T
    Flierl, M
    Girod, B
    SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, VOL 1, 1997, (443): : 36 - 40
  • [33] Entropy-constrained predictive compression of SAR raw data
    Magli, E
    Olmo, G
    MATHEMATICS OF DATA/IMAGE CODING, COMPRESSION, AND ENCRYPTION V, WITH APPLICATIONS, 2002, 4793 : 86 - 94
  • [34] Evaluation of neural and entropy-constrained routing of communication networks
    Karayiannis, NB
    Kaliyur, SMN
    Malki, HA
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2722 - 2727
  • [35] Codecell convexity in optimal entropy-constrained vector quantization
    György, A
    Linder, T
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 460 - 460
  • [36] ENTROPY-CONSTRAINED QUANTIZATION OF EXPONENTIALLY DAMPED SINUSOIDS PARAMETERS
    Derrien, Olivier
    Badeau, Roland
    Richard, Gael
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4064 - 4067
  • [37] Entropy-constrained index assignments for multiple description quantizers
    Cardinal, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (01) : 265 - 270
  • [38] Multilayer perceptrons applied to entropy-constrained image coding
    Gomes, JGRC
    Mitra, SK
    IEEE 11TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, 2004, : 129 - 133
  • [39] Optimal entropy-constrained scalar quantization of a uniform source
    György, A
    Linder, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2704 - 2711
  • [40] Deterministic annealing for entropy-constrained vector quantizer design
    Holt, Kevin M.
    Neuhoff, David L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4305 - 4323