Gaussian Processes Spectral Kernels Recover Brain Metastable Oscillatory Modes

被引:0
|
作者
Prieur-Coloma, Yunier [1 ,2 ]
Torres, Felipe [2 ]
Guevara, Pamela [2 ,3 ]
Contreras-Reyes, Javier E. [4 ]
El-Deredy, Wael [2 ,5 ,6 ]
机构
[1] Univ Valparaiso, Programa Doctorado Ciencias & Ingn Salud, Valparaiso, Chile
[2] Univ Valparaiso, Brain Dynam Lab, Valparaiso, Chile
[3] Univ Concepcion, Fac Ingn, Concepcion, Chile
[4] Univ Valparaiso, Fac Ciencias, Inst Estadist, Valparaiso, Chile
[5] Valencian Grad Sch Res Network Artificial Intelli, ValgrAI, Valencia, Spain
[6] Univ Valencia, Sch Engn, Dept Elect Engn, Valencia, Spain
关键词
gaussian processes; cross-spectral mixture kernel; oscillatory brain networks; FUNCTIONAL CONNECTIVITY;
D O I
10.1109/SIPAIM56729.2023.10373531
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gaussian processes (GPs) are a powerful machine learning tool to reveal hidden patterns in data. GPs hyperparameters are estimated from data, providing a framework for regression and classification tasks. We capitalize on the power of GPs to drive insights about the biophysical mechanisms underpinning metastable brain oscillations from observable data. Here, we used Multi-Output GPs (MOGPs) with Cross-Spectral Mixture (CSM) kernels to analyze the emergent oscillatory features from a whole-brain network model. The CSM kernel comprises a linear combination of oscillatory modes that represent the properties of characteristic fundamental frequencies. We simulate a network of phase-coupled oscillators comprising 90 brain regions connected according to the human connectome, with biophysical attributes that drive into three dynamic regimes: highly synchronized, low synchronized, and metastable synchrony. We trained MOGPs with the simulated time series. We show that the optimal number of oscillatory modes in each dynamical regime was correctly estimated in an unsupervised manner. The estimated hyperparameters after training the MOGPs described the oscillatory dynamics of each regime. Notably, in the metastable regime, 5 oscillatory modes were estimated, one corresponding to the fundamental frequency and four oscillatory modes that interchanged the magnitude of the covariance over time segments. We conclude that the MOGPs with CSM kernels were capable of recovering the metastable oscillatory modes and inferring attributes that are biophysically plausible and interpretable.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Incorporating Dependencies in Spectral Kernels for Gaussian Processes
    Chen, Kai
    van Laarhoven, Twan
    Chen, Jinsong
    Marchiori, Elena
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 565 - 581
  • [2] Spectral Mixture Kernels for Multi-Output Gaussian Processes
    Parra, Gabriel
    Tobar, Felipe
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [3] Spectral Reflectance Estimation Using Gaussian Processes and Combination Kernels
    Heikkinen, Ville
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) : 3358 - 3373
  • [4] Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome
    Joana Cabral
    Francesca Castaldo
    Jakub Vohryzek
    Vladimir Litvak
    Christian Bick
    Renaud Lambiotte
    Karl Friston
    Morten L. Kringelbach
    Gustavo Deco
    [J]. Communications Physics, 5
  • [5] Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome
    Cabral, Joana
    Castaldo, Francesca
    Vohryzek, Jakub
    Litvak, Vladimir
    Bick, Christian
    Lambiotte, Renaud
    Friston, Karl
    Kringelbach, Morten L.
    Deco, Gustavo
    [J]. COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [6] Compressible spectral mixture kernels with sparse dependency structures for Gaussian processes
    Chen, Kai
    Yin, Feng
    Cui, Shuguang
    [J]. SIGNAL PROCESSING, 2023, 213
  • [7] Voice conversion based on Gaussian processes by using kernels modeling the spectral density with Gaussian mixture models
    Bao, Jingyi
    Xu, Ning
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (34-36):
  • [8] Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG
    Paz-Linares, Deirel
    Gonzalez-Moreira, Eduardo
    Areces-Gonzalez, Ariosky
    Wang, Ying
    Li, Min
    Martinez-Montes, Eduardo
    Bosch-Bayard, Jorge
    Bringas-Vega, Maria L.
    Valdes-Sosa, Mitchell
    Valdes-Sosa, Pedro A.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG
    Deirel Paz-Linares
    Eduardo Gonzalez-Moreira
    Ariosky Areces-Gonzalez
    Ying Wang
    Min Li
    Eduardo Martinez-Montes
    Jorge Bosch-Bayard
    Maria L. Bringas-Vega
    Mitchell Valdes-Sosa
    Pedro A. Valdes-Sosa
    [J]. Scientific Reports, 13
  • [10] A universal envelope for Gaussian processes and their kernels
    Jørgensen P.E.T.
    [J]. Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 1 - 38