Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG

被引:3
|
作者
Paz-Linares, Deirel [1 ,2 ]
Gonzalez-Moreira, Eduardo [1 ,3 ,6 ]
Areces-Gonzalez, Ariosky [1 ,4 ]
Wang, Ying [1 ]
Li, Min [1 ]
Martinez-Montes, Eduardo [2 ]
Bosch-Bayard, Jorge [2 ,5 ]
Bringas-Vega, Maria L. [1 ,2 ]
Valdes-Sosa, Mitchell [1 ,2 ]
Valdes-Sosa, Pedro A. [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu Brain Sci Inst, Sch Life Sci & Technol, MOE Key Lab Neuroinformat,Clin Hosp, Chengdu, Peoples R China
[2] Cuban Neurosci Ctr, Dept Neuroinformat, Havana, Cuba
[3] Cent Univ Marta Abreu Las Villas, Sch Elect Engn, Santa Clara, Cuba
[4] Univ Pinar del Rio Hermanos Saiz Montes de Oca, Sch Tech Sci, Pinar Del Rio, Cuba
[5] McGill Univ, Montreal Neurol Inst, McGill Ctr Integrat Neurosci MCIN, Ludmer Ctr Mental Hlth, Montreal, PQ, Canada
[6] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Orangeburg, NY USA
关键词
RESTING-STATE NETWORKS; APPROXIMATE BAYESIAN COMPUTATION; PRECISION MATRIX ESTIMATION; HIGH-RESOLUTION EEG; FUNCTIONAL CONNECTIVITY; SOURCE LOCALIZATION; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; COVARIANCE; MEG;
D O I
10.1038/s41598-023-38513-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.
引用
收藏
页数:24
相关论文
共 36 条
  • [1] Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG
    Deirel Paz-Linares
    Eduardo Gonzalez-Moreira
    Ariosky Areces-Gonzalez
    Ying Wang
    Min Li
    Eduardo Martinez-Montes
    Jorge Bosch-Bayard
    Maria L. Bringas-Vega
    Mitchell Valdes-Sosa
    Pedro A. Valdes-Sosa
    [J]. Scientific Reports, 13
  • [2] COPULA GAUSSIAN GRAPHICAL MODELS WITH HIDDEN VARIABLES
    Yu, Hang
    Dauwels, Justin
    Wang, Xueou
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2177 - 2180
  • [3] Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
    Subhro Ghosh
    Soumendu Sundar Mukherjee
    Hoang-Son Tran
    Ujan Gangopadhyay
    [J]. Journal of Statistical Physics, 191
  • [4] Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
    Ghosh, Subhro
    Mukherjee, Soumendu Sundar
    Tran, Hoang-Son
    Gangopadhyay, Ujan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (04)
  • [5] Identifying significant edges in graphical models of molecular networks
    Scutari, Marco
    Nagarajan, Radhakrishnan
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 57 (03) : 207 - 217
  • [6] l Dynamic Gaussian Graphical Models for Modelling Genomic Networks
    Abbruzzo, Antonio
    Di Serio, Clelia
    Wit, Ernst
    [J]. COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS: 10TH INTERNATIONAL MEETING, 2014, 8452 : 3 - 12
  • [7] ESTIMATING BRAIN CONNECTIVITY USING COPULA GAUSSIAN GRAPHICAL MODELS
    Gao, Xi
    Shen, Weining
    Ting, Chee-Ming
    Cramer, Steven C.
    Srinivasan, Ramesh
    Ombao, Hernando
    [J]. 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 108 - 112
  • [8] Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity
    Belilovsky, Eugene
    Varoquaux, Gael
    Blaschko, Matthew
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] Gaussian Processes Spectral Kernels Recover Brain Metastable Oscillatory Modes
    Prieur-Coloma, Yunier
    Torres, Felipe
    Guevara, Pamela
    Contreras-Reyes, Javier E.
    El-Deredy, Wael
    [J]. 2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [10] Identifying differentially methylated regions via sparse conditional Gaussian graphical models
    Zeng, Yixiao
    Yang, Yi
    Greenwood, Celia
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 531 - 531