Exploring the essence of compound fault diagnosis: A novel multi-label domain adaptation method and its application to bearings

被引:3
|
作者
Chu, Liuxing [1 ]
Li, Qi [1 ]
Yang, Bingru [1 ]
Chen, Liang [1 ]
Shen, Changqing [1 ]
Wang, Dong [2 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215000, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Compound fault diagnosis; Domain adaptation; Multi-label learning; Rolling bearing; FRAMEWORK; CLASSIFICATION;
D O I
10.1016/j.heliyon.2023.e14545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Compound fault diagnosis in essence is a fundamental but difficult problem to be solved. The separation and extraction of compound fault features remain great challenges in industrial ap-plications due to the lack of labeled fault data. This paper proposes a novel multi-label domain adaptation method applicable to compound fault diagnosis of bearings. Firstly, multi-layer domain adaptation is designed based on a fault feature extractor with customized residual blocks. In that way, features from discrepant domain can be transformed into domain-invariant features. Furthermore, a multi-label classifier is applied to decompose compound fault features into corresponding single fault feature, and diagnoses them separately. The application on bearing datasets demonstrates that the proposed method could enhance the detachable degree of compound faults and achieve greater diagnostic performance than other existing methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions
    Lei, Zihao
    Wen, Guangrui
    Dong, Shuzhi
    Huang, Xin
    Zhou, Haoxuan
    Zhang, Zhifen
    Chen, Xuefeng
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [2] Application of a novel hybrid intelligent method to compound fault diagnosis of locomotive roller bearings
    Lei, Yaguo
    He, Zhengjia
    Zi, Yanyang
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (03):
  • [3] A novel compound fault diagnosis method for rolling bearings based on graph label manifold metric transfer
    Wang, Guangbin
    Zhao, Shubiao
    Chen, Jinhua
    Zhong, Zhixian
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [4] Multi-label deep transfer learning method for coupling fault diagnosis
    Xiao, Yaqi
    Zhou, Xuanying
    Zhou, Haiyin
    Wang, Jiongqi
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 212
  • [5] Transfer reinforcement learning method with multi-label learning for compound fault recognition
    Wang, Zisheng
    Zhang, Qing
    Tang, Lv
    Shi, Tielin
    Xuan, Jianping
    [J]. ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [6] A Novel Ensemble Approach to Multi-label Classification for Electric Power Fault Diagnosis
    Xi, Ziyue
    Chen, Xiaona
    Almad, Tanvir
    Ma, Yinglong
    [J]. PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 267 - 271
  • [7] Multi-label industrial fault diagnosis method based on the Transformer network model
    Huo, Jiuyuan
    Li, Chaojie
    Yu, Chunxiao
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (18): : 88 - 99
  • [8] Symplectic Ramanujan Mode Decomposition and its application to compound fault diagnosis of bearings
    Cheng, Jian
    Yang, Yu
    Wu, Xiaowei
    Wang, Jian
    Wu, Zhantao
    Cheng, Junsheng
    [J]. ISA TRANSACTIONS, 2022, 129 : 495 - 503
  • [9] Compound Fault Diagnosis of Gearboxes via Multi-label Convolutional Neural Network and Wavelet Transform
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    Zhu, Jinxuan
    Zhang, Zihan
    [J]. COMPUTERS IN INDUSTRY, 2019, 113
  • [10] RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE GENERATOR BEARINGS BASED ON DOMAIN ADAPTATION
    Tian, Miao
    Su, Xiaoming
    Chen, Changzheng
    An, Wenjie
    Sun, Xianming
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (11): : 310 - 317