An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

被引:41
|
作者
Lei, Zihao [1 ]
Wen, Guangrui [1 ,2 ]
Dong, Shuzhi [1 ]
Huang, Xin [1 ]
Zhou, Haoxuan [1 ]
Zhang, Zhifen [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
[2] Minist Modern Design & Rotor Bearing Syst, Key Lab Educ, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain adaptation (DA); extreme gradient boosting (XGBoost); intelligent fault diagnosis; multiscale mixed domain feature (MMDF); rolling bearings; APPROXIMATE ENTROPY; SPECTRAL KURTOSIS; GROUP LASSO; TOOL; CLASSIFICATION; COMPLEXITY; MACHINERY;
D O I
10.1109/TIM.2020.3041105
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for crass-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An intelligent fault diagnosis method based on domain adaptation for rolling bearings under variable load conditions
    Zhang, Jianqun
    Zhang, Qing
    Qin, Xianrong
    Sun, Yuantao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (24) : 8025 - 8038
  • [2] Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions
    Li, Weigui
    Yuan, Zhuqing
    Sun, Wenyu
    Liu, Yongpan
    2020 8TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2020), 2020, 319
  • [3] Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation
    Xia, Bingjie
    Wang, Kai
    Xu, Aidong
    Zeng, Peng
    Yang, Nan
    Li, Bangyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Fault diagnosis of rolling bearings under variable conditions based on unsupervised domain adaptation method
    Zhong, Jianhua
    Lin, Cong
    Gao, Yang
    Zhong, Jianfeng
    Zhong, Shuncong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [5] Fault diagnosis method of rolling bearings under different working conditions based on federated multi-representation domain adaptation
    Kang S.
    Yang J.
    Wang Y.
    Wang Q.
    Xie J.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (06): : 165 - 176
  • [6] Intelligent Fault Diagnosis of Bearings in Unsupervised Dynamic Domain Adaptation Networks Under Variable Conditions
    Zhang, Qianqian
    Lv, Zhongwei
    Hao, Caiyun
    Yan, Haitao
    Fan, Qiuxia
    IEEE ACCESS, 2024, 12 : 82911 - 82925
  • [7] Deep domain adaptation and its application in fault diagnosis across working conditions
    Yuan Z.
    Dong R.
    Zhang L.
    Duan L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (12): : 281 - 288
  • [8] An Intelligent Fault Diagnosis Method based on STFT and Convolutional Neural Network for Bearings Under Variable Working Conditions
    Zhong, Dawei
    Guo, Wei
    He, Da
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [9] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [10] Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
    Ding, Yifei
    Jia, Minping
    Zhuang, Jichao
    Cao, Yudong
    Zhao, Xiaoli
    Lee, Chi-Guhn
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230