Vulnerability Analysis of Continuous Prompts for Pre-trained Language Models

被引:0
|
作者
Li, Zhicheng [1 ]
Shi, Yundi [1 ]
Sheng, Xuan [1 ]
Yin, Changchun [1 ]
Zhou, Lu [1 ]
Li, Piji [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Prompt-based Learning; Adversarial Attack; Pretrained Language Models;
D O I
10.1007/978-3-031-44201-8_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prompt-based learning has recently emerged as a promising approach for handling the increasing complexity of downstream natural language processing (NLP) tasks, achieving state-of-the-art performance without using hundreds of billions of parameters. However, this paper investigates the general vulnerability of continuous prompt-based learning in NLP tasks, and uncovers an important problem: the predictions of continuous prompt-based models can be easily misled by noise perturbations. To address this issue, we propose a learnable attack approach that generates noise perturbations with the goal of minimizing their L-2-norm in order to attack the primitive, harmless successive prompts in a way that researchers may not be aware of. Our approach introduces a new loss function that generates small and impactful perturbations for each different continuous prompt. Even more, our approach shows that learnable attack perturbations with an L-2-norm close to zero can severely degrade the performance of continuous prompt-based models on downstream tasks. We evaluate the performance of our learnable attack approach against two continuous prompt-based models on three benchmark datasets and the results demonstrate that the noise and learnable attack methods can effectively attack continuous prompts, with some tasks exhibiting an F1-score close to 0.
引用
收藏
页码:508 / 519
页数:12
相关论文
共 50 条
  • [21] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    [J]. 2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,
  • [22] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [23] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [24] Impact of Morphological Segmentation on Pre-trained Language Models
    Westhelle, Matheus
    Bencke, Luciana
    Moreira, Viviane P.
    [J]. INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 402 - 416
  • [25] Leveraging Pre-trained Language Models for Gender Debiasing
    Jain, Nishtha
    Popovic, Maja
    Groves, Declan
    Specia, Lucia
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2188 - 2195
  • [26] InA: Inhibition Adaption on pre-trained language models
    Kang, Cheng
    Prokop, Jindrich
    Tong, Lei
    Zhou, Huiyu
    Hu, Yong
    Novak, Daniel
    [J]. NEURAL NETWORKS, 2024, 178
  • [27] A Close Look into the Calibration of Pre-trained Language Models
    Chen, Yangyi
    Yuan, Lifan
    Cui, Ganqu
    Liu, Zhiyuan
    Ji, Heng
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1343 - 1367
  • [28] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60
  • [29] Self-conditioning Pre-Trained Language Models
    Suau, Xavier
    Zappella, Luca
    Apostoloff, Nicholas
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [30] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430