Computational spectrometer based on local feature-weighted spectral reconstruction

被引:0
|
作者
Yan, Rong [1 ,2 ,3 ]
Wang, Shuai [4 ]
Jiao, Qiang [5 ,6 ]
Bian, Liheng [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China
[5] Minist Publ Secur Informat, Beijing 100741, Peoples R China
[6] Commun Ctr, Beijing 100741, Peoples R China
来源
OPTICS EXPRESS | 2023年 / 31卷 / 09期
基金
中国国家自然科学基金;
关键词
REFLECTANCE SPECTRA; KERNEL;
D O I
10.1364/OE.488854
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The computational spectrometer enables the reconstruction of spectra from precalibrated information encoded. In the last decade, it has emerged as an integrated and low-cost paradigm with vast potential for applications, especially in portable or handheld spectral analysis devices. The conventional methods utilize a local-weighted strategy in feature spaces. These methods overlook the fact that the coefficients of important features could be too large to reflect differences in more detailed feature spaces during calculations. In this work, we report a local feature-weighted spectral reconstruction (LFWSR) method, and construct a high-accuracy computational spectrometer. Different from existing methods, the reported method learns a spectral dictionary via L4-norm maximization for representing spectral curve features, and considers the statistical ranking of features. According to the ranking, weight features and update coefficients then calculate the similarity. What's more, the inverse distance weighted is utilized to pick samples and weight a local training set. Finally, the final spectrum is reconstructed utilizing the local training set and measurements. Experiments indicate that the reported method's two weighting processes produce state-of-the-art high accuracy.
引用
收藏
页码:14240 / 14254
页数:15
相关论文
共 50 条
  • [41] Feature-weighted AdaBoost classifier for punctuation prediction in Tamil and Hindi NLP systems
    Mrinalini, K.
    Vijayalakshmi, P.
    Nagarajan, T.
    [J]. EXPERT SYSTEMS, 2022, 39 (04)
  • [42] Collaborative feature-weighted multi-view fuzzy c-means clustering
    Yang, Miin-Shen
    Sinaga, Kristina P.
    [J]. PATTERN RECOGNITION, 2021, 119
  • [43] Low-cost micro-spectrometer based on a nano-imprint and spectral-feature reconstruction algorithm
    LIU, Q. I. N. G. Q. U. A. N.
    XUAN, Z. H. I. Y. I.
    WANG, Z. I.
    ZHAO, X. I. N. C. H. A. O.
    YIN, Z. H. I. Q. I. N.
    L, C. H. E. N. L. U., I
    CHEN, G. A. N. G.
    WANG, S. H. A. O. W. E. I.
    LU, W. E. I.
    [J]. OPTICS LETTERS, 2022, 47 (11) : 2923 - 2926
  • [44] Scene categorization based on integrated feature description and local weighted feature mapping
    Li, Fengcai
    Gu, Guanghua
    Wang, Chengru
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2012, 38 (04) : 917 - 925
  • [45] Collaborative feature-weighted multi-view fuzzy c-means clustering
    Yang, Miin-Shen
    Sinaga, Kristina P.
    [J]. Pattern Recognition, 2021, 119
  • [46] A novel approach for recipe prediction of fabric dyeing based on feature-weighted support vector regression and particle swarm optimisation
    Li, Feng
    Chen, Caiting
    Mao, Zhiping
    [J]. COLORATION TECHNOLOGY, 2022, 138 (05) : 495 - 508
  • [47] Spectral-Feature-Based Analysis of Reflectance and Emission Spectral Libraries and Imaging Spectrometer Data
    Kruse, Fred A.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [48] High resolution compact spectrometer system based on scattering and spectral reconstruction
    Wang, Xin
    Sun, Qi
    Chu, Yushi
    Brambilla, Gilberto
    Wang, Pengfei
    Beresna, Martynas
    [J]. OPTICS LETTERS, 2023, 48 (06) : 1466 - 1469
  • [49] Feature-Weighted Echo State Network for Dynamic Frequency Offset Modeling of Quartz Crystal Resonators
    Deng, Xiaogang
    Jing, Shengjie
    Wang, Shubin
    Huang, Xianri
    Liu, Hao
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (11) : 3211 - 3219
  • [50] Spectral CT Reconstruction with Weighted Non-Local Total-Variation Minimization
    Wu, Dufan
    Zhang, Li
    Xu, Xiaofei
    Wang, Sen
    [J]. 2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,