A causal roadmap for generating high-quality real-world evidence

被引:13
|
作者
Dang, Lauren E. [1 ]
Gruber, Susan [2 ]
Lee, Hana [3 ]
Dahabreh, Issa J. [4 ,5 ]
Stuart, Elizabeth A. [6 ]
Williamson, Brian D. [7 ]
Wyss, Richard [8 ]
Diaz, Ivan [9 ]
Ghosh, Debashis [10 ]
Kiciman, Emre [11 ]
Alemayehu, Demissie [12 ]
Hoffman, Katherine L. [13 ]
Vossen, Carla Y. [14 ]
Huml, Raymond A. [15 ]
Ravn, Henrik [16 ]
Kvist, Kajsa [16 ]
Pratley, Richard [17 ]
Shih, Mei-Chiung [18 ,19 ]
Pennello, Gene [20 ]
Martin, David [21 ]
Waddy, Salina P. [22 ]
Barr, Charles E. [23 ,24 ]
Akacha, Mouna [25 ]
Buse, John B. [26 ]
Van der Laan, Mark [1 ]
Petersen, Maya [1 ]
机构
[1] Univ Calif Berkeley, Dept Biostat, Berkeley, CA 94720 USA
[2] TL Revolut, Cambridge, MA USA
[3] US FDA, Ctr Drug Evaluat & Res, Off Biostat, Off Translat Sci, Silver Spring, MD USA
[4] Harvard TH Chan Sch Publ Hlth, CAUSALab, Dept Epidemiol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA
[7] Kaiser Permanente Washington Hlth Res Inst, Biostat Div, Seattle, WA USA
[8] Harvard Med Sch, Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA USA
[9] New York Univ, Div Biostat, Dept Populat Hlth, Grossman Sch Med, New York, NY USA
[10] Univ Colorado Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA
[11] Microsoft Res, Redmond, WA USA
[12] Pfizer Inc, Global Biometr & Data Management, New York, NY USA
[13] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USA
[14] Syneos Hlth Clin Solut, Amsterdam, Netherlands
[15] Syneos Hlth Clin Solut, Morrisville, NC USA
[16] Novo Nordisk, Soborg, Denmark
[17] AdventHlth Translat Res Inst, Orlando, FL USA
[18] VA Palo Alto Hlth Care Syst, Cooperat Studies Program Coordinating Ctr, Palo Alto, CA USA
[19] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[20] US FDA, Ctr Devices & Radiol Hlth, Off Sci & Engn Labs, Div Imaging Diagnost & Software Reliabil, Silver Spring, MD USA
[21] Moderna, Global Real World Evidence Grp, Cambridge, MA USA
[22] Natl Ctr Adv Translat Sci, Bethesda, MD USA
[23] Graticule Inc, Newton, MA USA
[24] Adaptic Hlth Inc, Palo Alto, CA USA
[25] Novartis Pharma AG, Basel, Switzerland
[26] Univ N Carolina, Dept Med, Div Endocrinol, Chapel Hill, NC USA
关键词
Causal inference; real-world evidence; sensitivity analysis; simulations; estimands; machine learning; SENSITIVITY-ANALYSIS; RANDOMIZED-TRIAL; TARGET TRIAL; INFERENCE; IDENTIFICATION; MORTALITY; DIAGRAMS; ABSENCE; DESIGN;
D O I
10.1017/cts.2023.635
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Increasing emphasis on the use of real-world evidence (RWE) to support clinical policy and regulatory decision-making has led to a proliferation of guidance, advice, and frameworks from regulatory agencies, academia, professional societies, and industry. A broad spectrum of studies use real-world data (RWD) to produce RWE, ranging from randomized trials with outcomes assessed using RWD to fully observational studies. Yet, many proposals for generating RWE lack sufficient detail, and many analyses of RWD suffer from implausible assumptions, other methodological flaws, or inappropriate interpretations. The Causal Roadmap is an explicit, itemized, iterative process that guides investigators to prespecify study design and analysis plans; it addresses a wide range of guidance within a single framework. By supporting the transparent evaluation of causal assumptions and facilitating objective comparisons of design and analysis choices based on prespecified criteria, the Roadmap can help investigators to evaluate the quality of evidence that a given study is likely to produce, specify a study to generate high-quality RWE, and communicate effectively with regulatory agencies and other stakeholders. This paper aims to disseminate and extend the Causal Roadmap framework for use by clinical and translational researchers; three companion papers demonstrate applications of the Causal Roadmap for specific use cases.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Real-World Evidence in the Real World: Beyond the FDA
    Krause, Joan H.
    Saver, Richard S.
    [J]. AMERICAN JOURNAL OF LAW & MEDICINE, 2018, 44 (2-3) : 161 - 179
  • [32] Editorial: Real-world data and real-world evidence in lung cancer
    Gristina, Valerio
    Eze, Chukwuka
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [33] When can real-world data generate real-world evidence?
    Rahman, Motiur
    Dal Pan, Gerald
    Stein, Peter
    Levenson, Mark
    Kraus, Stefanie
    Chakravarty, Aloka
    Rivera, Donna R.
    Forshee, Richard
    Concato, John
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 (01)
  • [34] Editorial: Real-world data and real-world evidence in hematologic malignancies
    Malagola, Michele
    Ohgami, Robert
    Greco, Raffaella
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [35] On Generating High-Quality Random Numbers
    Saqib, Nazar Abbas
    Zia, Muhammad
    Mahmood, Hasan
    Khan, Muazzam A.
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (02)
  • [36] Real-World Evidence: A Primer
    Zura, Robert
    Irwin, Debra E.
    Mack, Christina D.
    Aldridge, Molly L.
    Mackowiak, John, I
    [J]. JOURNAL OF ORTHOPAEDIC TRAUMA, 2021, 35 : S1 - S5
  • [37] Real-World Evidence for Equality
    Johnson, C. Erwin
    Whiteside, Yohance Omar
    [J]. HEALTH EQUITY, 2021, 5 (01) : 724 - 726
  • [38] Commentary: Real-world Evidence
    Dadds, Mark R.
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF FAMILY THERAPY, 2016, 37 (04) : 465 - 466
  • [39] Real-World Evidence: A Primer
    Amit Dang
    [J]. Pharmaceutical Medicine, 2023, 37 : 25 - 36
  • [40] Real-World Evidence: A Primer
    Dang, Amit
    [J]. PHARMACEUTICAL MEDICINE, 2023, 37 (01) : 25 - 36