A causal roadmap for generating high-quality real-world evidence

被引:13
|
作者
Dang, Lauren E. [1 ]
Gruber, Susan [2 ]
Lee, Hana [3 ]
Dahabreh, Issa J. [4 ,5 ]
Stuart, Elizabeth A. [6 ]
Williamson, Brian D. [7 ]
Wyss, Richard [8 ]
Diaz, Ivan [9 ]
Ghosh, Debashis [10 ]
Kiciman, Emre [11 ]
Alemayehu, Demissie [12 ]
Hoffman, Katherine L. [13 ]
Vossen, Carla Y. [14 ]
Huml, Raymond A. [15 ]
Ravn, Henrik [16 ]
Kvist, Kajsa [16 ]
Pratley, Richard [17 ]
Shih, Mei-Chiung [18 ,19 ]
Pennello, Gene [20 ]
Martin, David [21 ]
Waddy, Salina P. [22 ]
Barr, Charles E. [23 ,24 ]
Akacha, Mouna [25 ]
Buse, John B. [26 ]
Van der Laan, Mark [1 ]
Petersen, Maya [1 ]
机构
[1] Univ Calif Berkeley, Dept Biostat, Berkeley, CA 94720 USA
[2] TL Revolut, Cambridge, MA USA
[3] US FDA, Ctr Drug Evaluat & Res, Off Biostat, Off Translat Sci, Silver Spring, MD USA
[4] Harvard TH Chan Sch Publ Hlth, CAUSALab, Dept Epidemiol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[6] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA
[7] Kaiser Permanente Washington Hlth Res Inst, Biostat Div, Seattle, WA USA
[8] Harvard Med Sch, Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA USA
[9] New York Univ, Div Biostat, Dept Populat Hlth, Grossman Sch Med, New York, NY USA
[10] Univ Colorado Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA
[11] Microsoft Res, Redmond, WA USA
[12] Pfizer Inc, Global Biometr & Data Management, New York, NY USA
[13] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USA
[14] Syneos Hlth Clin Solut, Amsterdam, Netherlands
[15] Syneos Hlth Clin Solut, Morrisville, NC USA
[16] Novo Nordisk, Soborg, Denmark
[17] AdventHlth Translat Res Inst, Orlando, FL USA
[18] VA Palo Alto Hlth Care Syst, Cooperat Studies Program Coordinating Ctr, Palo Alto, CA USA
[19] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[20] US FDA, Ctr Devices & Radiol Hlth, Off Sci & Engn Labs, Div Imaging Diagnost & Software Reliabil, Silver Spring, MD USA
[21] Moderna, Global Real World Evidence Grp, Cambridge, MA USA
[22] Natl Ctr Adv Translat Sci, Bethesda, MD USA
[23] Graticule Inc, Newton, MA USA
[24] Adaptic Hlth Inc, Palo Alto, CA USA
[25] Novartis Pharma AG, Basel, Switzerland
[26] Univ N Carolina, Dept Med, Div Endocrinol, Chapel Hill, NC USA
关键词
Causal inference; real-world evidence; sensitivity analysis; simulations; estimands; machine learning; SENSITIVITY-ANALYSIS; RANDOMIZED-TRIAL; TARGET TRIAL; INFERENCE; IDENTIFICATION; MORTALITY; DIAGRAMS; ABSENCE; DESIGN;
D O I
10.1017/cts.2023.635
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Increasing emphasis on the use of real-world evidence (RWE) to support clinical policy and regulatory decision-making has led to a proliferation of guidance, advice, and frameworks from regulatory agencies, academia, professional societies, and industry. A broad spectrum of studies use real-world data (RWD) to produce RWE, ranging from randomized trials with outcomes assessed using RWD to fully observational studies. Yet, many proposals for generating RWE lack sufficient detail, and many analyses of RWD suffer from implausible assumptions, other methodological flaws, or inappropriate interpretations. The Causal Roadmap is an explicit, itemized, iterative process that guides investigators to prespecify study design and analysis plans; it addresses a wide range of guidance within a single framework. By supporting the transparent evaluation of causal assumptions and facilitating objective comparisons of design and analysis choices based on prespecified criteria, the Roadmap can help investigators to evaluate the quality of evidence that a given study is likely to produce, specify a study to generate high-quality RWE, and communicate effectively with regulatory agencies and other stakeholders. This paper aims to disseminate and extend the Causal Roadmap framework for use by clinical and translational researchers; three companion papers demonstrate applications of the Causal Roadmap for specific use cases.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Generating Real-World Evidence on the Quality Use, Benefits and Safety of Medicines in Australia: History, Challenges and a Roadmap for the Future
    Pearson, Sallie-Anne
    Pratt, Nicole
    de Oliveira Costa, Juliana
    Zoega, Helga
    Laba, Tracey-Lea
    Etherton-Beer, Christopher
    Sanfilippo, Frank M.
    Morgan, Alice
    Kalisch Ellett, Lisa
    Bruno, Claudia
    Kelty, Erin
    IJzerman, Maarten
    Preen, David B.
    Vajdic, Claire M.
    Henry, David
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (24)
  • [2] A Statistical Roadmap for Journey from Real-World Data to Real-World Evidence
    Yixin Fang
    Hongwei Wang
    Weili He
    [J]. Therapeutic Innovation & Regulatory Science, 2020, 54 : 749 - 757
  • [3] A Statistical Roadmap for Journey from Real-World Data to Real-World Evidence
    Fang, Yixin
    Wang, Hongwei
    He, Weili
    [J]. THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2020, 54 (04) : 749 - 757
  • [4] The Adjudication Process at ACTION - Providing Real-World High-Quality Data
    Shezad, M. F.
    Rosenthal, D.
    Larkins, C.
    Heile, T.
    Zafar, F.
    Jeewa, A.
    Barnes, A. P.
    Lorts, A.
    Joong, A.
    Kwiatkowski, D.
    Sutcliffe, D.
    Sparks, J.
    Simpson, K. E.
    Ploutz, M.
    Ghanayem, N.
    Niebler, R.
    Davies, R.
    Auerbach, S.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S174 - S174
  • [5] Development and Validation of a High-Quality Composite Real-World Mortality Endpoint
    Curtis, Melissa D.
    Griffith, Sandra D.
    Tucker, Melisa
    Taylor, Michael D.
    Capra, William B.
    Carrigan, Gillis
    Holzman, Ben
    Torres, Aracelis Z.
    You, Paul
    Arnieri, Brandon
    Abernethy, Amy P.
    [J]. HEALTH SERVICES RESEARCH, 2018, 53 (06) : 4460 - 4476
  • [6] Real-World Evidence, Causal Inference, and Machine Learning
    Crown, William H.
    [J]. VALUE IN HEALTH, 2019, 22 (05) : 587 - 592
  • [7] Assessing Real-World Data Quality: The Application of Patient Registry Quality Criteria to Real-World Data and Real-World Evidence
    Richard E. Gliklich
    Michelle B. Leavy
    [J]. Therapeutic Innovation & Regulatory Science, 2020, 54 : 303 - 307
  • [8] Assessing Real-World Data Quality: The Application of Patient Registry Quality Criteria to Real-World Data and Real-World Evidence
    Gliklich, Richard E.
    Leavy, Michelle B.
    [J]. THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2020, 54 (02) : 303 - 307
  • [9] Real-world evidence in Alzheimer's disease: The ROADMAP Data Cube
    Janssen, Olin
    Vos, Stephanie J. B.
    Garcia-Negredo, Gloria
    Tochel, Claire
    Gustavsson, Anders
    Smith, Michael
    Ly, Amanda
    Nelson, Mia
    Baldwin, Helen
    Sudlow, Catherine
    Bexelius, Christin
    Jindra, Christoph
    Vaci, Nemanja
    Bauermeister, Sarah
    Gallacher, John
    Ponjoan, Anna
    Dufouil, Carole
    Olmo, Josep Garre
    Pedersen, Lars
    Skoog, Ingmar
    Hottgenroth, Antje
    Visser, Pieter Jelle
    van der Lei, Johan
    Diaz, Carlos
    [J]. ALZHEIMERS & DEMENTIA, 2020, 16 (03) : 461 - 471
  • [10] Real-World Evidence for Causal Inference-Are We Ready?
    Strauss, Martin H.
    Narkiewicz, Krzysztof
    Lavie, Carl J.
    Masi, Stefano
    [J]. MAYO CLINIC PROCEEDINGS, 2023, 98 (12) : 1890 - 1892