Semi-supervised deep embedded clustering with pairwise constraints and subset allocation

被引:4
|
作者
Wang, Yalin [1 ]
Zou, Jiangfeng [1 ]
Wang, Kai [1 ]
Liu, Chenliang [1 ]
Yuan, Xiaofeng [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised clustering; Deep embedded clustering; Pairwise constraints; Subset allocation; Sample overlap; REPRESENTATIONS; ALGORITHM;
D O I
10.1016/j.neunet.2023.04.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semi-supervised deep clustering methods attract much attention due to their excellent performance on the end-to-end clustering task. However, it is hard to obtain satisfying clustering results since many overlapping samples in industrial text datasets strongly and incorrectly influence the learning process. Existing methods incorporate prior knowledge in the form of pairwise constraints or class labels, which not only largely ignore the correlation between these two supervision information but also cause the problem of weak-supervised constraint or incorrect strong-supervised label guidance. In order to tackle these problems, we propose a semi-supervised method based on pairwise constraints and subset allocation (PCSA-DEC). We redefine the similarity-based constraint loss by forcing the similarity of samples in the same class much higher than other samples and design a novel subset allocation loss to precisely learn strong-supervised information contained in labels which consistent with unlabeled data. Experimental results on the two industrial text datasets show that our method can yield 8.2%-8.7% improvement in accuracy and 13.4%-19.8% on normalized mutual information over the state-of-the-art method. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:310 / 322
页数:13
相关论文
共 50 条
  • [1] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [2] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372
  • [3] Semi-supervised Clustering with Pairwise and Size Constraints
    Zhang, Shaohong
    Wong, Hau-San
    Xie, Dongqing
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2450 - 2457
  • [4] Semi-supervised DenPeak Clustering with Pairwise Constraints
    Ren, Yazhou
    Hu, Xiaohui
    Shi, Ke
    Yu, Guoxian
    Yao, Dezhong
    Xu, Zenglin
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 837 - 850
  • [5] Deep semi-supervised clustering based on pairwise constraints and sample similarity
    Qin, Xiao
    Yuan, Changan
    Jiang, Jianhui
    Chen, Long
    [J]. PATTERN RECOGNITION LETTERS, 2024, 178 : 1 - 6
  • [6] Semi-supervised deep embedded clustering
    Ren, Yazhou
    Hu, Kangrong
    Dai, Xinyi
    Pan, Lili
    Hoi, Steven C. H.
    Xu, Zenglin
    [J]. NEUROCOMPUTING, 2019, 325 : 121 - 130
  • [7] Semi-Supervised Maximum Margin Clustering with Pairwise Constraints
    Zeng, Hong
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (05) : 926 - 939
  • [8] Effective semi-supervised graph clustering with pairwise constraints
    Chen, Jingwei
    Xie, Shiyu
    Yang, Hui
    Nie, Feiping
    [J]. INFORMATION SCIENCES, 2024, 681
  • [9] Deep multi-view semi-supervised clustering with sample pairwise constraints
    Chen, Rui
    Tang, Yongqiang
    Zhang, Wensheng
    Feng, Wenlong
    [J]. NEUROCOMPUTING, 2022, 500 : 832 - 845
  • [10] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,