Predicting drug response from single-cell expression profiles of tumours (vol 21, 476,2023)

被引:0
|
作者
Pellecchia, Simona [1 ,2 ]
Viscido, Gaetano [1 ,3 ]
Franchini, Melania [1 ,4 ]
Gambardella, Gennaro [1 ]
机构
[1] Telethon Inst Genet & Med, Naples, Italy
[2] Scuola Super Meridionale, Genom & Expt Med Program, Naples, Italy
[3] Univ Naples Federico II, Dept Chem Mat & Ind Engn, Naples, Italy
[4] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
关键词
D O I
10.1186/s12916-024-03289-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:2
相关论文
共 47 条
  • [41] Genomic expression analysis by single-cell mRNA differential display of quiescent CD8 T cells from tumour-infiltrating lymphocytes obtained from in vivo liver tumours
    Zhang, Wei
    Ding, Jianqing
    Qu, Yan
    Hu, Hongliang
    Lin, Meihua
    Datta, Amit
    Larson, Alan
    Liu, George E.
    Li, Biaoru
    IMMUNOLOGY, 2009, 127 (01) : 83 - 90
  • [42] Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression (vol 6, 8687, 2015)
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Ilicic, Tomislav
    Teichmann, Sarah A.
    Marioni, John C.
    NATURE COMMUNICATIONS, 2016, 7
  • [43] A necroptosis-related prognostic model for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma based on single-cell sequencing analysis and weighted co-expression network
    Li, Jingjing
    Wu, Zhi
    Wang, Shuchen
    Li, Chan
    Zhuang, Xuhui
    He, Yuewen
    Xu, Jianmei
    Su, Meiyi
    Wang, Yong
    Ma, Wuhua
    Fan, Dehui
    Yue, Ting
    FRONTIERS IN GENETICS, 2022, 13
  • [46] Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19 (vol 22, pg 988, 2021)
    Cheng, Jinyu
    Zhang, Ji
    Wu, Zhongdao
    Sun, Xiaoqiang
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (02) : 1511 - 1512
  • [47] Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Single-cell Transcriptomes (vol 7, 8815, 2017)
    Zhou, Joseph X.
    Taramelli, Roberto
    Pedrini, Edoardo
    Knijnenburg, Theo
    Huang, Sui
    SCIENTIFIC REPORTS, 2018, 8