An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes

被引:1
|
作者
Mu, Shengying [1 ]
Zhou, Yanhui [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
isoparametric bilinear FVEM; Simpson rule; coercivity result; optimal H1 error estimate; anisotropic diffusion problem; SCHEMES; SUPERCONVERGENCE;
D O I
10.3934/math.20231147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we construct and study a special isoparametric bilinear finite volume element scheme for solving anisotropic diffusion problems on general convex quadrilateral meshes. The new scheme is obtained by employing the Simpson rule to approximate the line integrals in the classical isoparametric bilinear finite volume element method. By using the cell analysis approach, we suggest a sufficient condition to ensure the coercivity of the new scheme. The sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and the geometry of quadrilateral mesh. This yields that for any diffusion tensor and quadrilateral mesh, we can directly judge whether this sufficient condition is satisfied. Specifically, this condition covers the traditional h1+& gamma;-parallelogram and some trapezoidal meshes with any full anisotropic diffusion tensor. An optimal H1 error estimate of the proposed scheme is also obtained for a quasi-parallelogram mesh. The theoretical results are verified by some numerical experiments.
引用
收藏
页码:22507 / 22537
页数:31
相关论文
共 50 条
  • [31] Optimal Bicubic Finite Volume Methods on Quadrilateral Meshes
    Chen, Yanli
    Li, Yonghai
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2015, 7 (04) : 454 - 471
  • [32] Topological improvement procedures for quadrilateral finite element meshes
    S. A. Canann
    S. N. Muthukrishnan
    R. K. Phillips
    Engineering with Computers, 1998, 14 : 168 - 177
  • [33] FINITE ELEMENT ERROR EXPANSION FOR NONUNIFORM QUADRILATERAL MESHES
    林群
    Journal of Systems Science & Complexity, 1989, (03) : 275 - 282
  • [34] Topological improvement procedures for quadrilateral finite element meshes
    Canann, SA
    Muthukrishnan, SN
    Phillips, RK
    ENGINEERING WITH COMPUTERS, 1998, 14 (02) : 168 - 177
  • [35] A computationally efficient isoparametric tangled finite element method for handling inverted quadrilateral and hexahedral elements
    Prabhune, Bhagyashree
    Suresh, Krishnan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [36] Analysis of a 2-field finite element solver for poroelasticity on quadrilateral meshes
    Wang, Zhuoran
    Tavener, Simon
    Liu, Jiangguo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
  • [37] Automatic generation of quadrilateral meshes for the finite element analysis of metal forming processes
    Petersen, S.B.
    Rodrigues, J.M.C.
    Martins, P.A.F.
    Finite elements in analysis and design, 1999, 35 (02): : 157 - 168
  • [38] Automatic generation of quadrilateral meshes for the finite element analysis of metal forming processes
    Petersen, SB
    Rodrigues, JMC
    Martins, PAF
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2000, 35 (02) : 157 - 168
  • [39] L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes
    Junliang Lv
    Yonghai Li
    Advances in Computational Mathematics, 2012, 37 : 393 - 416
  • [40] A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes
    Gao, Yanni
    Yuan, Guangwei
    Wang, Shuai
    Hang, Xudeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407