Multiclass classifier based on deep learning for detection of citrus disease using fluorescence imaging spectroscopy

被引:6
|
作者
Neves, Ruan F. O. [1 ]
Wetterich, Caio B. [2 ]
Sousa, Elaine P. M. [3 ]
Marcassa, Luis G. [1 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, Cx Postal 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Inst Fed Sao Paulo, Campus Barretos, BR-14781502 Barretos, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
image analysis; fluorescence spectroscopy; citrus diseases; CANKER; DIAGNOSIS; PLANTS; IDENTIFICATION; STATE; HLB;
D O I
10.1088/1555-6611/acc6bd
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we have combined fluorescence imaging spectroscopy (FIS) and supervised learning methods to identify and discriminate between citrus canker, Huanglongbing, and other leaf symptoms. Our goal is to differentiate these diseases and nutrient conditions without prior eye assessment of symptoms. Five supervised learning methods were evaluated. Our results show that by combining FIS with a convolutional neural network (AlexNet), it is possible to identify the disease of a sample with up to 95% accuracy. An enormous gain of time and a substantial cost reduction were achieved by this approach compared to polymerase chain reaction-based methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Detection of Huanglongbing in Florida using fluorescence imaging spectroscopy and machine-learning methods
    Wetterich, Caio Bruno
    de Oliveira Neves, Ruan Felipe
    Belasque, Jose
    Ehsani, Reza
    Marcassa, Luis Gustavo
    APPLIED OPTICS, 2017, 56 (01) : 15 - 23
  • [32] An efficient system for anomaly detection using deep learning classifier
    A. R. Revathi
    Dhananjay Kumar
    Signal, Image and Video Processing, 2017, 11 : 291 - 299
  • [33] An efficient system for anomaly detection using deep learning classifier
    Revathi, A. R.
    Kumar, Dhananjay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 291 - 299
  • [34] Portable fluorescence spectroscopy platform for Huanglongbing (HLB) citrus disease in situ detection
    Mota, Alessandro D.
    Rossi, Giuliano
    Cunha de Castro, Guilherme
    Ortega, Tiago A.
    de Castro N, Jarbas C.
    LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVIII, 2014, 9003
  • [35] Deep feature-based plant disease identification using machine learning classifier
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2024, 20 (04) : 789 - 799
  • [36] Rapid detection of citrus Huanglongbing based on chlorophyll fluorescence imaging technology
    Weng H.
    He C.
    Xu J.
    Liu L.
    Qing J.
    Wan L.
    Ye D.
    Ye, Dapeng (ydp@fafu.edu.cn), 1600, Chinese Society of Agricultural Engineering (36): : 196 - 203
  • [37] Mechanical Damage Detection of Indonesia Local Citrus Based on Fluorescence Imaging
    Siregar, T. H.
    Ahmad, U.
    Sutrisno
    Maddu, A.
    2ND INTERNATIONAL CONFERENCE ON AGRICULTURAL ENGINEERING FOR SUSTAINABLE AGRICULTURAL PRODUCTION (AESAP 2017), 2018, 147
  • [38] AlzONet: a deep learning optimized framework for multiclass Alzheimer's disease diagnosis using MRI brain imaging
    Alahmed, Hiba A.
    Al-Suhail, Ghaida A.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [39] Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information
    Dunphy, Kyle
    Fekri, Mohammad Navid
    Grolinger, Katarina
    Sadhu, Ayan
    SENSORS, 2022, 22 (16)
  • [40] Performance Analysis of Multiclass Object Detection using SVM Classifier
    Fathima, A. Annis
    Vaidehi, V.
    Rastogi, Nishant
    Kumar, R. Manoj
    Sivasubramaniam, S.
    2013 INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION TECHNOLOGY (ICRTIT), 2013, : 157 - 162