Enhancing Dielectric and High-Temperature Energy Storage Capability for Benzoxazole Polymer Films Featuring Naphthalene Ring Blocks

被引:5
|
作者
Wang, Xinhua [1 ]
Ni, Xinyao [1 ]
Yuan, You [1 ]
Qian, Jun [1 ]
Zuo, Peiyuan [1 ]
Liu, Xiaoyun [1 ]
Zhuang, Qixin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Specially Funct Polymer Mat & Related Tec, Minist Educ, Shanghai 200237, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
polymer dielectric films; energy storage; naphthalene; PBO; structural modifications; BENZOBISOXAZOLE); CAPACITORS; DESIGN;
D O I
10.1021/acsapm.3c01342
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All-organic polymer dielectrics used in electrical and electronic systems have been proven to be an efficient option for large-scale industrial production. Modifying the side chain of polymers can improve the energy storage performance of polymers, but it can hardly solve the problem of failure under high-temperature application. Herein, an innovative approach is proposed to introduce a group with high temperature resistance into the main chain to reconstruct the chain structure to solve the abovementioned problem. Concretely, a naphthalene ring was introduced to the chain of polyphenylene benzodioxazole (PBO) that is the most promising polymer applied in a high-temperature environment. The naphthalene ring endows the molecular structure with both enhanced permittivity and breakdown strength by decoupling the conjugation of the main chain, increasing the dielectric constant. Meanwhile, an appropriate ratio of benzene-naphthalene as deep traps enables reduced carriers' mobility and an increased band gap, thereby enhancing the breakdown strength. The discharged energy density of the copolymer reached 5.26 J/cm3 with a charge-discharge efficiency of 91.8% under 450 MV/m at room temperature. Simultaneously, a discharged energy density of 3.1 J/ cm3 was also obtained at 150 degrees C. This work provides a scalable approach to explore polymer dielectrics by freely introducing a small amount of local structural modifications.
引用
收藏
页码:8143 / 8150
页数:8
相关论文
共 50 条
  • [31] Dielectric polymers with mechanical bonds for high-temperature capacitive energy storage
    Wang, Rui
    Zhu, Yujie
    Huang, Shangshi
    Fu, Jing
    Zhou, Yifan
    Li, Manxi
    Meng, Li
    Zhang, Xiyu
    Liang, Jiajie
    Ran, Zhaoyu
    Yang, Mingcong
    Li, Junluo
    Dong, Xinhua
    Hu, Jun
    He, Jinliang
    Li, Qi
    NATURE MATERIALS, 2025,
  • [32] Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage
    Wang, Yifei
    Li, Zongze
    Wu, Chao
    Zhou, Peinan
    Zhou, Jierui
    Huo, Jindong
    Davis, Kerry
    Konstantinou, Antigoni C.
    Hiep Nguyen
    Cao, Yang
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [33] Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films
    Ding, Song
    Bao, Zhiwei
    Wang, Yiwei
    Dai, Zhizhan
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    JOURNAL OF POWER SOURCES, 2023, 570
  • [34] High-Temperature Energy Storage Properties of Polymer-Based Composite Films Based on Multidimensional Synergy
    Tan Y.
    Gao H.
    Feng Z.
    Lu L.
    Deng J.
    Yao L.
    Deng Q.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 52 (04): : 1250 - 1256
  • [35] Nanodiamond/Polyimide High Temperature Dielectric Films for Energy Storage Applications
    Wang, David H.
    Fillery, Scott P.
    Durstock, Michael F.
    Dai, Liming
    Vaia, Richard A.
    Tan, Loon-Seng
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 410 - +
  • [36] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [37] Polymer dielectrics for high-temperature energy storage: Constructing carrier traps
    Zha, Jun -Wei
    Xiao, Mengyu
    Wan, Baoquan
    Wang, Xinmo
    Dang, Zhi-Min
    Chen, George
    PROGRESS IN MATERIALS SCIENCE, 2023, 140
  • [38] Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer
    Kaiyi Zhang
    Zhuyu Ma
    Hua Deng
    Qiang Fu
    Advanced Composites and Hybrid Materials, 2022, 5 : 238 - 249
  • [39] Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer
    Zhang, Kaiyi
    Ma, Zhuyu
    Deng, Hua
    Fu, Qiang
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (01) : 238 - 249
  • [40] High-temperature energy storage capability of polyetherimide composite incorporated with perovskite quantum dots
    Ye, Huijian
    Gao, Wei
    Xu, Lixin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 687