Deformation Modeling for the Robotic Manipulation of 3D Elastic Objects using Physics-Informed Graph Neural Networks

被引:0
|
作者
Valencia, Angel J. [1 ]
Payeur, Pierre [1 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
deformable 3D objects; robotic manipulation; motion estimation; simulation;
D O I
10.1109/CRV60082.2023.00032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to estimate the motion of objects is crucial for robotic agents to act and interact in their environments. This is particularly challenging for non-rigid objects, as they exhibit complex dynamics with large degrees of freedom. This work presents a methodology to learn deformation models of 3D elastic objects based on graph networks. Our approach exploits physical reasoning by introducing soft constraints into the loss function during training. We evaluate the proposed method in a simulation framework developed for robotic manipulation tasks. Results show that such a physics-informed model is able to predict more accurate object motions with less data than a purely data-driven based model.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 50 条
  • [41] 3D traveltime calculation of first arrival wave using physics-informed neural network
    Du G.
    Tan J.
    Song P.
    Xie C.
    Wang S.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2023, 58 (01): : 9 - 20
  • [42] Combining Self-Organizing and Graph Neural Networks for Modeling Deformable Objects in Robotic Manipulation
    Valencia, Angel J.
    Payeur, Pierre
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [43] DIFFUSION ON FRACTAL OBJECTS MODELING AND ITS PHYSICS-INFORMED NEURAL NETWORK SOLUTION
    Zhao, Dazhi
    Yu, Guozhu
    Li, Weibin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (03)
  • [44] Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks
    Cho, Sangin
    Choi, Woochang
    Ji, Jun
    Pyun, Sukjoon
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2023, 26 (03): : 114 - 125
  • [45] Physics-informed neural networks for gravity field modeling of the Earth and Moon
    John Martin
    Hanspeter Schaub
    Celestial Mechanics and Dynamical Astronomy, 2022, 134
  • [46] A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling
    Viana, Felipe A. C.
    Subramaniyan, Arun K.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (05) : 3801 - 3830
  • [47] Physics-informed neural networks for scientific modeling: uses, implementations, and directions
    New, Alexander
    Gearhart, Andrew S.
    Darragh, Ryan A.
    Villafane-Delgado, Marisel
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI, 2024, 13051
  • [48] Stochastic Memristor Modeling Framework Based on Physics-Informed Neural Networks
    Kim, Kyeongmin
    Lee, Jonghwan
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [49] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    Acoustical Science and Technology, 45 (06): : 333 - 336
  • [50] Forecasting Buoy Observations Using Physics-Informed Neural Networks
    Schmidt, Austin B.
    Pokhrel, Pujan
    Abdelguerfi, Mahdi
    Ioup, Elias
    Dobson, David
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (03) : 821 - 840