Semi-supervised Semantic Segmentation with Uncertainty-Guided Self Cross Supervision

被引:0
|
作者
Zhang, Yunyang [1 ]
Gong, Zhiqiang [1 ]
Zhao, Xiaoyu [1 ]
Zheng, Xiaohu [2 ]
Yao, Wen [1 ]
机构
[1] Chinese Acad Mil Sci, Def Innovat Inst, Beijing, Peoples R China
[2] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha, Peoples R China
来源
关键词
Semi-supervised semantic segmentation; Consistency regularization; Multi-input multi-output; Uncertainty;
D O I
10.1007/978-3-031-26293-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a powerful way of realizing semi-supervised segmentation, the cross supervision method learns cross consistency based on independent ensemble models using abundant unlabeled images. In this work, we propose a novel cross supervision method, namely uncertainty-guided self cross supervision (USCS). To avoid multiplying the cost of computation resources caused by ensemble models, we first design a multi-input multi-output (MIMO) segmentation model which can generate multiple outputs with the shared model. The self cross supervision is imposed over the results from one MIMO model, heavily saving the cost of parameters and calculations. On the other hand, to further alleviate the large noise in pseudo labels caused by insufficient representation ability of the MIMO model, we employ uncertainty as guided information to encourage the model to focus on the high confident regions of pseudo labels and mitigate the effects of wrong pseudo labeling in self cross supervision, improving the performance of the segmentation model. Extensive experiments show that our method achieves state-of-the-art performance while saving 40.5% and 49.1% cost on parameters and calculations.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [31] Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation
    Cui, Yawen
    Deng, Wanxia
    Xu, Xin
    Liu, Zhen
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6422 - 6435
  • [32] Instance-specific and Model-adaptive Supervision for Semi-supervised Semantic Segmentation
    Zhao, Zhen
    Long, Sifan
    Pi, Jimin
    Wang, Jingdong
    Zhou, Luping
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 23705 - 23714
  • [33] Semi-supervised OCT lesion segmentation via transformation-consistent with uncertainty and self-deep supervision
    Shen, Hailan
    Yang, Qiao
    Chen, Zailiang
    Ye, Ziyu
    Dai, Peishan
    Duan, Xuanchu
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (07) : 3828 - 3840
  • [34] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [35] Self Pseudo Entropy Knowledge Distillation for Semi-supervised Semantic Segmentation
    Lu X.
    Jiao L.
    Li L.
    Liu F.
    Liu X.
    Yang S.
    IEEE Trans Circuits Syst Video Technol, 8 (7359-7372): : 1 - 1
  • [36] LaserMix for Semi-Supervised LiDAR Semantic Segmentation
    Kong, Lingdong
    Ren, Jiawei
    Pan, Liang
    Liu, Ziwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21705 - 21715
  • [37] Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation
    Jiang, Li
    Shi, Shaoshuai
    Tian, Zhuotao
    Lai, Xin
    Liu, Shu
    Fu, Chi-Wing
    Jia, Jiaya
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6403 - 6412
  • [38] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857
  • [39] A semi-supervised approach for the semantic segmentation of trajectories
    Soares Junior, Amilcar
    Times, Valeria Cesario
    Renso, Chiara
    Matwin, Stan
    Cabral, Lucidio A. F.
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 145 - 154
  • [40] Revisiting Consistency for Semi-Supervised Semantic Segmentation
    Grubisic, Ivan
    Orsic, Marin
    Segvic, Sinisa
    SENSORS, 2023, 23 (02)