Expectation-maximization Estimation Algorithm for Bilinear State-space Systems with Missing Outputs Using Kalman Smoother

被引:2
|
作者
Wang, Xinyue [1 ]
Ma, Junxia [1 ]
Xiong, Weili [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear state-space system; expectation-maximization algorithm; Kalman smoother; missing outputs; parameter estimation; IDENTIFICATION; MODEL;
D O I
10.1007/s12555-021-1029-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the parameter estimation of bilinear state-space systems with missing outputs is studied. The bilinear model is transformed into a linear time-varying state-space model, and Kalman smoother with a time-varying gain is adopted to estimate missing outputs and unmeasurable states. Under the expectation-maximization (EM) algorithm scheme, an iterative estimation algorithm based on Kalman smoother is derived, in which the unknown parameters, missing outputs, and unmeasurable states can be estimated simultaneously. Two simulation examples, including a numerical example and a three-tank system experiment, are adopted to verify the effectiveness of the proposed algorithm.
引用
收藏
页码:912 / 923
页数:12
相关论文
共 50 条
  • [21] Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother
    Cetisli, Bayram
    Edizkan, Rifat
    [J]. NEURAL COMPUTING & APPLICATIONS, 2011, 20 (03): : 403 - 415
  • [22] Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother
    Bayram Cetisli
    Rifat Edizkan
    [J]. Neural Computing and Applications, 2011, 20 : 403 - 415
  • [23] Parameter estimation from interval-valued data using the expectation-maximization algorithm
    Su, Zhi-Gang
    Wang, Pei-Hong
    Li, Yi-Guo
    Zhou, Ze-Kun
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (02) : 320 - 338
  • [24] Identification of Two-Dimensional ausal Systems With Missing Output Data via Expectation-Maximization Algorithm
    Chen, Jing
    Huang, Biao
    Ding, Feng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5185 - 5196
  • [25] Using the expectation-maximization algorithm for depth estimation and segmentation of multi-view images
    Grammalidis, N
    Bleris, L
    Strintzis, MG
    [J]. FIRST INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING VISUALIZATION AND TRANSMISSION, 2002, : 686 - 689
  • [26] Estimation of cortical multivariate autoregressive models for EEG/MEG using an expectation-maximization algorithm
    Cheung, Bing Leung Patrick
    Van Veen, Barry D.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1235 - 1238
  • [27] Identification of Slow-Rate Integrated Measurement Systems Using Expectation-Maximization Algorithm
    Kheirandish, Amid
    Fatehi, Alireza
    Gheibi, Mir Sajjad
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (12) : 9477 - 9484
  • [28] Parameter estimation from load-sharing system data using the expectation-maximization algorithm
    Park, Chanseok
    [J]. IIE TRANSACTIONS, 2013, 45 (02) : 147 - 163
  • [29] ROV State Estimation Using Mixture of Gaussian Based on Expectation-Maximization Cubature Particle Filter
    Wang, Biao
    Chen, Chunhao
    Jiang, Zhe
    Zhao, Yu
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [30] Maximum Likelihood recursive state estimation using the Expectation Maximization algorithm
    Ramadan, Mohammad S.
    Bitmead, Robert R.
    [J]. AUTOMATICA, 2022, 144