Study of existence results for fractional functional differential equations involving Riesz-Caputo derivative

被引:5
|
作者
Tiwari, Pratima [1 ]
Pandey, Rajesh K. [1 ]
Pandey, D. N. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 3期
关键词
Riesz-Caputo fractional derivative; The existence of solution; Kuratowski measure of non-compactness; Nonlinear fractional differential equations; COUPLED QUASI-SOLUTIONS; EVOLUTION-EQUATIONS; INTEGRAL-EQUATIONS; MAXIMUM PRINCIPLE; ITERATIVE METHOD; MILD SOLUTIONS; DIFFUSION;
D O I
10.1007/s41478-024-00728-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within this work, we look into the existence results for a family of fractional functional differential equations employing the Riesz-Caputo fractional derivative in a Banach space. Fractional calculus techniques, Kuratowski's measure of non-compactness, Carathe '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}odory conditions, and some theorems on fixed points are used to establish existence results. In the end, a few examples are showcased to evince the proficiency of the offered results.
引用
收藏
页码:1929 / 1949
页数:21
相关论文
共 50 条
  • [1] Existence results of fractional differential equations with Riesz-Caputo derivative
    Chen, Fulai
    Baleanu, Dumitru
    Wu, Guo-Cheng
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3411 - 3425
  • [2] Existence and Stability Results for Impulsive Implicit Fractional Differential Equations with Delay and Riesz-Caputo Derivative
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [3] Existence results of fractional differential equations with Riesz–Caputo derivative
    Fulai Chen
    Dumitru Baleanu
    Guo-Cheng Wu
    [J]. The European Physical Journal Special Topics, 2017, 226 : 3411 - 3425
  • [4] Existence of Solutions for Anti-Periodic Fractional Differential Inclusions Involving ψ-Riesz-Caputo Fractional Derivative
    Yang, Dandan
    Bai, Chuanzhi
    [J]. MATHEMATICS, 2019, 7 (07)
  • [5] A SINGULAR FRACTIONAL DIFFERENTIAL EQUATION WITH RIESZ-CAPUTO DERIVATIVE
    Ji, Dehong
    Ma, Yuan
    Ge, Weigao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 642 - 656
  • [6] On Fractional Differential Equations with Riesz-Caputo Derivative and Non-Instantaneous Impulses
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 109 - 132
  • [7] ANALYSIS OF A CLASS OF FRACTIONAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS WITH RIESZ-CAPUTO DERIVATIVE
    Tiwari, Pratima
    Pandey, Rajesh k.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [8] Functional Differential Equations Involving theψ-Caputo Fractional Derivative
    Almeida, Ricardo
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (02) : 1 - 8
  • [9] Fractional variational problems with the Riesz-Caputo derivative
    Almeida, Ricardo
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (02) : 142 - 148
  • [10] Existence and Stability Results for Impulsive Implicit Fractional Differential Equations with Delay and Riesz–Caputo Derivative
    Wafaa Rahou
    Abdelkrim Salim
    Jamal Eddine Lazreg
    Mouffak Benchohra
    [J]. Mediterranean Journal of Mathematics, 2023, 20