Fractional variational problems with the Riesz-Caputo derivative

被引:41
|
作者
Almeida, Ricardo [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, Aveiro, Portugal
关键词
Calculus of variations; Riesz-Caputo fractional derivative; Isoperimetric problem; TERMS; CALCULUS;
D O I
10.1016/j.aml.2011.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 50 条
  • [1] On Riesz-Caputo Formulation for Sequential Fractional Variational Principles
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [2] A SINGULAR FRACTIONAL DIFFERENTIAL EQUATION WITH RIESZ-CAPUTO DERIVATIVE
    Ji, Dehong
    Ma, Yuan
    Ge, Weigao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 642 - 656
  • [3] Existence results of fractional differential equations with Riesz-Caputo derivative
    Chen, Fulai
    Baleanu, Dumitru
    Wu, Guo-Cheng
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3411 - 3425
  • [4] Existence and Iteration of Monotone Positive Solutions for Fractional Boundary Value Problems with Riesz-Caputo Derivative
    Li, Meiling
    Wang, Yunqing
    [J]. ENGINEERING LETTERS, 2021, 29 (02) : 327 - 331
  • [5] Approximation of the Riesz-Caputo Derivative by Cubic Splines
    Pitolli, Francesca
    Sorgentone, Chiara
    Pellegrino, Enza
    [J]. ALGORITHMS, 2022, 15 (02)
  • [6] Anti-periodic boundary value problems with Riesz-Caputo derivative
    Chen, Fulai
    Chen, Anping
    Wu, Xia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [7] On Fractional Differential Equations with Riesz-Caputo Derivative and Non-Instantaneous Impulses
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 109 - 132
  • [8] Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
    Blaszczyk, Tomasz
    Bekus, Krzysztof
    Szajek, Krzysztof
    Sumelka, Wojciech
    [J]. MECCANICA, 2022, 57 (04) : 861 - 870
  • [9] Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory
    Tomasz Blaszczyk
    Krzysztof Bekus
    Krzysztof Szajek
    Wojciech Sumelka
    [J]. Meccanica, 2022, 57 : 861 - 870
  • [10] Fractional Noether's theorem in the Riesz-Caputo sense
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) : 1023 - 1033