Temporal convolutional network based rice crop yield prediction using multispectral satellite data

被引:3
|
作者
Mohan, Alkha [1 ]
Venkatesan, M. [2 ]
Prabhavathy, P. [3 ]
Jayakrishnan, A. [2 ]
机构
[1] Indian Inst Informat Technol Tiruchirappalli, Dept Comp Sci & Engn, Tiruchirappalli 620012, Tamil Nadu, India
[2] Natl Inst Technol Puducherry, Dept Comp Sci & Engn, Pondicherry 609609, India
[3] Vellore Inst Technol, Dept Informat Technol, Vellore 632014, Tamil Nadu, India
关键词
Yield prediction; Temporal Convolutional Network; Dilated convolution; Vegetation index; Deep learning; NEURAL-NETWORKS;
D O I
10.1016/j.infrared.2023.104960
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Early prediction of crop yield has a significant role in ensuring food security. The crop yield depends on several parameters, such as vegetation parameters, climatic parameters, soil condition, etc. Spatial and temporal analysis of cropland is necessary for accurate prediction of yield. Usage of satellite images along with climatic data improves the prediction accuracy. This paper outlines a novel crop yield prediction model for the Paddy from Moderate Resolution Imaging Spectroradiometer (MODIS) data and climatic parameters. Various vegetation indices (VI) are collected from MODIS data for the crop's entire life cycle. The proposed Temporal Convolutional network (TCN) with a specially designed dilated convolution module predicts the rice crop yield from vegetation indices and climatic parameters. The causal property of TCN and dilated convolution contribute to the multivariate time-based analysis of the crop and results in better performance.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data
    Suarez, Luz Angelica
    Robson, Andrew
    McPhee, John
    O'Halloran, Julie
    van Sprang, Celia
    PRECISION AGRICULTURE, 2020, 21 (06) : 1304 - 1326
  • [42] Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data
    Luz Angelica Suarez
    Andrew Robson
    John McPhee
    Julie O’Halloran
    Celia van Sprang
    Precision Agriculture, 2020, 21 : 1304 - 1326
  • [43] Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest Prediction of Head Rice Yield in Australia
    Clarke, Allister
    Yates, Darren
    Blanchard, Christopher
    Islam, Md. Zahidul
    Ford, Russell
    Rehman, Sabih-Ur
    Walsh, Robert Paul
    REMOTE SENSING, 2024, 16 (10)
  • [44] Crop yield prediction with deep convolutional neural networks
    Nevavuori, Petteri
    Narra, Nathaniel
    Lipping, Tarmo
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163
  • [45] Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models
    Nevavuori, Petteri
    Narra, Nathaniel
    Linna, Petri
    Lipping, Tarmo
    REMOTE SENSING, 2020, 12 (23) : 1 - 18
  • [46] Prediction of mutation effects using a deep temporal convolutional network
    Kim, Ha Young
    Kim, Dongsup
    BIOINFORMATICS, 2020, 36 (07) : 2047 - 2052
  • [47] Human Trajectory Prediction Using Stacked Temporal Convolutional Network
    Wang, Yajie
    Ma, Jinli
    Pei, Zhao
    Li, Jun
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1270 - 1274
  • [48] Gene Expression Prediction using Stacked Temporal Convolutional Network
    Kamal, Imam Mustafa
    Wahid, Nur Ahmad
    Bae, Hyerim
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 402 - 405
  • [49] Rice Yield Prediction and Model Interpretation Based on Satellite and Climatic Indicators Using a Transformer Method
    Liu, Yuanyuan
    Wang, Shaoqiang
    Chen, Jinghua
    Chen, Bin
    Wang, Xiaobo
    Hao, Dongze
    Sun, Leigang
    REMOTE SENSING, 2022, 14 (19)
  • [50] ESTIMATION OF RICE GROWTH STATUS, PROTEIN CONTENT AND YIELD PREDICTION USING MULTI-SATELLITE DATA
    Wakamori, K.
    Ichikawa, D.
    Oguri, N.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5089 - 5092