Temporal convolutional network based rice crop yield prediction using multispectral satellite data

被引:3
|
作者
Mohan, Alkha [1 ]
Venkatesan, M. [2 ]
Prabhavathy, P. [3 ]
Jayakrishnan, A. [2 ]
机构
[1] Indian Inst Informat Technol Tiruchirappalli, Dept Comp Sci & Engn, Tiruchirappalli 620012, Tamil Nadu, India
[2] Natl Inst Technol Puducherry, Dept Comp Sci & Engn, Pondicherry 609609, India
[3] Vellore Inst Technol, Dept Informat Technol, Vellore 632014, Tamil Nadu, India
关键词
Yield prediction; Temporal Convolutional Network; Dilated convolution; Vegetation index; Deep learning; NEURAL-NETWORKS;
D O I
10.1016/j.infrared.2023.104960
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Early prediction of crop yield has a significant role in ensuring food security. The crop yield depends on several parameters, such as vegetation parameters, climatic parameters, soil condition, etc. Spatial and temporal analysis of cropland is necessary for accurate prediction of yield. Usage of satellite images along with climatic data improves the prediction accuracy. This paper outlines a novel crop yield prediction model for the Paddy from Moderate Resolution Imaging Spectroradiometer (MODIS) data and climatic parameters. Various vegetation indices (VI) are collected from MODIS data for the crop's entire life cycle. The proposed Temporal Convolutional network (TCN) with a specially designed dilated convolution module predicts the rice crop yield from vegetation indices and climatic parameters. The causal property of TCN and dilated convolution contribute to the multivariate time-based analysis of the crop and results in better performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Estimating of rice crop yield in Thailand using satellite data
    Nontasiri, J.
    Dash, J.
    Roberts, G.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [2] Skill Gradient Descent Algorithm Based Convolutional Neural Network for Plant Growth and Crop Yield Prediction using Satellite Images
    Kushwah, Satyam Singh
    Rani, Rajneesh
    [J]. International Conference on Intelligent Algorithms for Computational Intelligence Systems, IACIS 2024, 2024,
  • [3] Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network
    Sethy, Prabira Kumar
    Barpanda, Nalini Kanta
    Rath, Amiya Kumar
    Behera, Santi Kumari
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 5703 - 5711
  • [4] Nitrogen Deficiency Prediction of Rice Crop Based on Convolutional Neural Network
    Prabira Kumar Sethy
    Nalini Kanta Barpanda
    Amiya Kumar Rath
    Santi Kumari Behera
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 5703 - 5711
  • [5] Crop classification using temporal stacks of multispectral satellite imagery
    Moody, Daniela I.
    Brumby, Steven P.
    Chartrand, Rick
    Keisler, Ryan
    Longbotham, Nathan
    Mertes, Carly
    Skillman, Samuel W.
    Warren, Michael S.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIII, 2017, 10198
  • [6] Multispectral Crop Yield Prediction Using 3D-Convolutional Neural Networks and Attention Convolutional LSTM Approaches
    Nejad, Seyed Mahdi Mirhoseini
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Farmonov, Nizom
    Amankulova, Khilola
    Laszlz, Mucsi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 254 - 266
  • [7] Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network
    Yli-Heikkila, Maria
    Wittke, Samantha
    Luotamo, Markku
    Puttonen, Eetu
    Sulkava, Mika
    Pellikka, Petri
    Heiskanen, Janne
    Klami, Arto
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [8] Assimilation of satellite data in crop monitoring and yield prediction
    Steven, MD
    Werker, R
    Milnes, M
    [J]. PHYSICAL MEASUREMENTS AND SIGNATURES IN REMOTE SENSING, VOLS 1 AND 2, 1997, : 853 - 857
  • [9] Agricultural Analysis and Crop Yield Prediction of Habiganj using Multispectral Bands of Satellite Imagery with Machine Learning
    Shahrin, Fariha
    Zahin, Labiba
    Rahman, Ramisa
    Hossain, A. S. M. Jahir
    Kaf, Abdulla Hil
    Azad, A. K. M. Abdul Malek
    [J]. PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 21 - 24
  • [10] Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data
    Mia, Md. Suruj
    Tanabe, Ryoya
    Habibi, Luthfan Nur
    Hashimoto, Naoyuki
    Homma, Koki
    Maki, Masayasu
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    [J]. REMOTE SENSING, 2023, 15 (10)