Accounting for Greenhouse Gas Emissions in the Agricultural System of China Based on the Life Cycle Assessment Method

被引:1
|
作者
Ning, Jing [1 ]
Zhang, Chunmei [1 ]
Hu, Mingjun [1 ]
Sun, Tiancheng [1 ]
机构
[1] Northeast Agr Univ, Sch Publ Adm & Law, Harbin 150030, Peoples R China
基金
中国国家自然科学基金;
关键词
agriculture; life cycle assessment; greenhouse gas emission accounting; China;
D O I
10.3390/su16062594
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Agricultural systems contribute nearly one-third of global anthropogenic GHG emissions and are an important source of GHGs globally. The clarification of the GHG emission pattern from agriculture is of paramount importance in the establishment of an agricultural emission reduction mechanism and the realization of China's dual-carbon target. Based on the life cycle assessment method (LCA), this paper comprehensively quantifies the greenhouse gas emissions from the agricultural system in China, encompassing rice, wheat, and corn cultivation as well as animal husbandry including cows, horses, donkeys, mules, camels, pigs, and sheep. The analysis covers the period 2000-2020 and examines the spatial distribution, temporal trends, and structural changes in the greenhouse gas emissions within China's agriculture sector. The main results are as follows: (1) from 2000 to 2020, China witnessed a consistent upward trajectory in its total agricultural GHG emissions, exhibiting an average annual growth rate of 0.73%. Notably, methane (CH4) emissions emerged as the largest contributor, displaying an overall fluctuating pattern. Carbon dioxide (CO2) emissions demonstrated intermittent increases with a noteworthy annual growth rate of 3%, signifying the most rapid expansion within this context. Conversely, nitrous oxide (N2O) emissions experienced decline over the specified period. (2) GHG emissions from cultivation demonstrate an upward trajectory, primarily driven by the CH4 emissions originating from rice cultivation and CO2 resulting from straw incineration. Conversely, GHG emissions stemming from animal husbandry declined, with the primary source being CH4 emissions arising from animal enteric fermentation. Agricultural N2O emissions predominantly arise due to manure management and nitrogen fertilizer application. (3) Agricultural greenhouse gas emissions exhibit significant variations in spatial distribution, gradually concentrating towards the North China Plain, the middle and lower reaches of the Yangtze River, and the northeast. Specifically, agricultural CH4 emissions are progressively concentrated in China's pivotal rice-growing regions, encompassing the middle and lower reaches of the Yangtze River Plain, as well as livestock breeding areas like Inner Mongolia. Agricultural CO2 emissions primarily concentrate in dryland crop production zones such as North China and Northeast China. Meanwhile, Agricultural N2O emissions predominantly occur in Inner Mongolia and the North China Plain. China's agricultural greenhouse gas emissions in 2020 show a significant spatial clustering effect, with hotspots primarily concentrated in Shandong, Anhui, Henan, and other regions and cold spots focused in the western and southern areas. The emission patterns of agricultural GHGs are closely intertwined with farming practices, regional development levels, and national policy; hence, tailored measures for emission reduction should be formulated based on specific crop types, livestock categories, agricultural production activities, and regional development characteristics.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the US
    Huo, Hong
    Cai, Hao
    Zhang, Qiang
    Liu, Fei
    He, Kebin
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 108 : 107 - 116
  • [32] Life cycle greenhouse gas emissions of Marcellus shale gas
    Jiang, Mohan
    Griffin, W. Michael
    Hendrickson, Chris
    Jaramillo, Paulina
    VanBriesen, Jeanne
    Venkatesh, Aranya
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (03):
  • [33] Mitigating greenhouse gas emissions from sheep production system in China: An integrated approach of data envelopment analysis and life cycle assessment
    Nsabiyeze, Assa
    Ma, Ruiqin
    Li, Jun
    Zhao, Qinan
    Zhang, Mengjie
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2024, 207
  • [34] Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment
    Xia, Fang
    Zhang, Zhuo
    Zhang, Qian
    Huang, Haochong
    Zhao, Xiaohui
    [J]. Science of the Total Environment, 2024, 911
  • [35] Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment
    Xia, Fang
    Zhang, Zhuo
    Zhang, Qian
    Huang, Haochong
    Zhao, Xiaohui
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 911
  • [36] Greenhouse gas emissions from bio-based growing media: A life-cycle assessment
    Hashemi, Fatemeh
    Mogensen, Lisbeth
    Smith, Aidan Mark
    Larsen, Soren Ugilt
    Knudsen, Marie Trydeman
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 907
  • [37] Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options
    Rudisuli, Martin
    Bach, Christian
    Bauer, Christian
    Beloin-Saint-Pierre, Didier
    Elber, Urs
    Georges, Gil
    Limpach, Robert
    Pareschi, Giacomo
    Kannan, Ramachandran
    Teske, Sinan L.
    [J]. APPLIED ENERGY, 2022, 306
  • [38] Agricultural C cycle and greenhouse gas emission in China
    Lin, ED
    Liu, YF
    Li, Y
    [J]. NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 49 (1-3) : 295 - 299
  • [39] Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs
    Sherman, Jodi
    Le, Cathy
    Lamers, Vanessa
    Eckelman, Matthew
    [J]. ANESTHESIA AND ANALGESIA, 2012, 114 (05): : 1086 - 1090
  • [40] Assessing the life cycle greenhouse gas emissions of biorefineries
    Sokka, Laura
    Soimakallio, Sampo
    [J]. LIFE CYCLE ASSESSMENT OF PRODUCTS AND TECHNOLOGIES, 2009, 262 : 17 - 26