New integral inequalities involving generalized Riemann-Liouville fractional operators

被引:0
|
作者
Delgado, Juan Gabriel Galeano [1 ]
Valdes, Juan E. Napoles [2 ,3 ]
Reyes, Edgardo Perez [1 ]
机构
[1] Univ Sinu Elias Bechara Zainum, Fac Ciencias Ingn, Monteria, Colombia
[2] UNNE, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[3] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
关键词
Generalized fractional Riemann-Liouville integral; fractional integral inequality; synchronous functions; MONOTONICITY;
D O I
10.24193/subbmath.2023.3.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using a generalized operator of the Riemann-Liouville type, defined and studied in a previous work, several integral inequalities for synchronous functions are established.
引用
收藏
页码:481 / 487
页数:7
相关论文
共 50 条
  • [21] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [22] Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Mubeen, Shahid
    Iqbal, Sana
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [23] NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION
    Varosanec, Sanja
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1351 - 1361
  • [24] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [25] On New Inequalities via Riemann-Liouville Fractional Integration
    Sarikaya, Mehmet Zeki
    Ogunmez, Hasan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [26] Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Shahid Mubeen
    Sana Iqbal
    [J]. Journal of Inequalities and Applications, 2016
  • [27] AN EXTENSION BY MEANS OF ω-WEIGHTED CLASSES OF THE GENERALIZED RIEMANN-LIOUVILLE k-FRACTIONAL INTEGRAL INEQUALITIES
    Agarwal, P.
    Restrepo, J. E.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 35 - 46
  • [28] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Yuruo Zhang
    JinRong Wang
    [J]. Journal of Inequalities and Applications, 2013 (1)
  • [29] NEW EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITIES INVOLVING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Budak, H.
    Kara, H.
    Sarikaya, M. Z.
    Kiris, M. E.
    [J]. MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 665 - 678
  • [30] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Zhang, Yuruo
    Wang, JinRong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,