Feature Enhancement and Reconstruction for Small Object Detection

被引:0
|
作者
Zhang, Chong-Jian [1 ,2 ]
Chen, Song-Lu [1 ,2 ]
Liu, Qi [1 ,2 ]
Huang, Zhi-Yong [1 ,2 ]
Chen, Feng [2 ,3 ]
Yin, Xu-Cheng [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
[2] USTB EEasyTech Joint Lab Artificial Intelligence, Beijing 100083, Peoples R China
[3] EEasy Technol Co Ltd, Zhuhai 519000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Small object detection; Content-aware upsampling; Content-shuffle attention;
D O I
10.1007/978-3-031-27077-2_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the small size and noise interference, small object detection is still a challenging task. The previous work can not effectively reduce noise interference and extract representative features of the small object. Although the upsampling network can alleviate the loss of features by enlarging feature maps, it can not enhance semantics and will introduce more noises. To solve the above problems, we propose CAU (Content-Aware Upsampling) to enhance feature representation and semantics of the small object. Moreover, we propose CSA (Content-Shuffle Attention) to reconstruct robust features and reduce noise interference using feature shuffling and attention. Extensive experiments verify that our proposed method can improve small object detection by 2.2% on the traffic sign dataset TT-100K and 0.8% on the object detection dataset MS COCO compared with the baseline model.
引用
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
  • [21] Tiny Object Detection in Remote Sensing Images Based on Object Reconstruction and Multiple Receptive Field Adaptive Feature Enhancement
    Liu, Dongyang
    Zhang, Junping
    Qi, Yunxiao
    Wu, Yinhu
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [22] Feature enhancement modules applied to a feature pyramid network for object detection
    Liu, Min
    Lin, Kun
    Huo, Wujie
    Hu, Lanlan
    He, Zhizi
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 617 - 629
  • [23] Feature enhancement modules applied to a feature pyramid network for object detection
    Min Liu
    Kun Lin
    Wujie Huo
    Lanlan Hu
    Zhizi He
    Pattern Analysis and Applications, 2023, 26 : 617 - 629
  • [24] Feature aggregation network for small object detection
    Jing, Rudong
    Zhang, Wei
    Li, Yuzhuo
    Li, Wenlin
    Liu, Yanyan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [25] Adaptive Feature Fusion for Small Object Detection
    Zhang, Qi
    Zhang, Hongying
    Lu, Xiuwen
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [26] Lateral Feature Enhancement Network for Page Object Detection
    Shi, Cao
    Xu, Canhui
    Bi, Hengyue
    Cheng, Yuanzhi
    Li, Yuteng
    Zhang, Honghong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] Tiny object detection with context enhancement and feature purification
    Xiao, Jinsheng
    Guo, Haowen
    Zhou, Jian
    Zhao, Tao
    Yu, Qiuze
    Chen, Yunhua
    Wang, Zhongyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [28] Dense Attentive Feature Enhancement for Salient Object Detection
    Li, Zun
    Lang, Congyan
    Liang, Liqian
    Zhao, Jian
    Feng, Songhe
    Hou, Qibin
    Feng, Jiashi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8128 - 8141
  • [29] Feature Enhancement for Multi-scale Object Detection
    Zheng, Huicheng
    Chen, Jiajie
    Chen, Lvran
    Li, Ye
    Yan, Zhiwei
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1907 - 1919
  • [30] FEDet: Feature Enhancement Object Detection with Panoramic Images
    Chang, Qingling
    Zhang, Taijie
    Liu, Wenhao
    Cui, Yan
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 92 - 98