LRS Bianchi type I with anisotropic bulk viscosity matter cosmological typical and quadratic deceleration parameter in f(R, ∑, T) gravity

被引:0
|
作者
Alkaoud, A. [1 ]
Bakry, M. A. [2 ]
Eid, A. [1 ,3 ]
Khader, M. M. [4 ,5 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Phys, Riyadh, Saudi Arabia
[2] Ain Shams Univ, Fac Educ, Dept Math, Cairo, Egypt
[3] Cairo Univ, Fac Sci, Dept Astron, Giza, Egypt
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[5] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
关键词
f(R; sum; T); Gravity; LRS Bianchi type-I space-time; Bulk viscosity; Quadratic deceleration parameter; DARK ENERGY;
D O I
10.1007/s12648-024-03094-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The objective of this article is to explore the properties of a spatially homogeneous but anisotropic Bianchi type-I universe within the framework of f(R, & sum;, T) gravity. In this typical, the universe contains bulk viscosity matter<bold>,</bold> and R is the Ricci scalar, & sum; is the torsion scalar, T is the trace of the stress-energy momentum tensor, and eta is an arbitrary parameter that defines the functional form of f(R, & sum;, T) = R + Sigma +2 eta T. The field equations are solved utilizing the quadratic deceleration parameter, and a comprehensive analysis is conducted to examine and discuss the influence of torsion on the physical and kinematic characteristics of the typical in relation to the future evolution of the universe. Furthermore, we explore the weak energy conditions, dominant energy conditions, and strong energy conditions within our typical. Our results indicate that the universe is undergoing acceleration, and that this phenomenon is attributed to the existence of bulk viscosity matter.
引用
收藏
页码:3033 / 3042
页数:10
相关论文
共 50 条
  • [21] LRS Bianchi type-I cosmological models with accelerated expansion in f(R, T) gravity in the presence of (T)
    Pradhan, Anirudh
    Tiwari, Rishi Kumar
    Beesham, A.
    Zia, Rashid
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [22] LRS Bianchi type I with anisotropic bulk viscosity matter cosmological typical and quadratic deceleration parameter in f(R,∑,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R,\sum ,T)$$\end{document} gravity
    A. Alkaoud
    M. A. Bakry
    A. Eid
    M. M. Khader
    [J]. Indian Journal of Physics, 2024, 98 (8) : 3033 - 3042
  • [23] LRS Bianchi Type II in f (R, T) Gravity
    Godani, Nisha
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON FRONTIERS IN INDUSTRIAL AND APPLIED MATHEMATICS (FIAM-2019), 2020, 2253
  • [24] LRS Bianchi I model with strange quark matter and Λ(t) in f (R,T) gravity
    Singh, Vijay
    Beesham, Aroonkumar
    [J]. NEW ASTRONOMY, 2021, 89
  • [25] LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter
    Akarsu, Oezguer
    Kilinc, Can Battal
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (01) : 119 - 140
  • [26] LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter
    Özgür Akarsu
    Can Battal Kılınç
    [J]. General Relativity and Gravitation, 2010, 42
  • [27] Exact Solutions of LRS Bianchi Type I Spacetime in f(R, T) Gravity
    Shamir, M. Farasat
    [J]. MATHEMATICAL PHYSICS, 2018, : 104 - 109
  • [28] Cosmology in f(R, T) gravity with quadratic deceleration parameter
    Bishi, Binaya K.
    Beesham, Aroonkumar
    Mahanta, Kamal L.
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2022, 77 (03): : 259 - 268
  • [29] Bianchi type I and V solutions in f(R, T) gravity with time-dependent deceleration parameter
    Zubair, M.
    Hassan, Syed M. Ali
    Abbas, G.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2016, 94 (12) : 1289 - 1296
  • [30] On a Bianchi type-I space-time with bulk viscosity in f(R,T) gravity
    Koussour, M.
    Bennai, M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (03)