Jackknife Kibria-Lukman estimator for the beta regression model

被引:2
|
作者
Koc, Tuba [1 ]
Dunder, Emre [2 ]
机构
[1] Cankiri Karatekin Univ, Stat Dept, Cankiri, Turkiye
[2] Ondokuz Mayis Univ, Stat Dept, Samsun, Turkiye
关键词
Beta regression model; jackknife KL estimator; KL estimator; liu estimator; multicollinearity; ridge estimator; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1080/03610926.2023.2273206
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The beta regression model is a flexible model, which widely used when the dependent variable is in ratios and percentages in the range of (0.1). The coefficients of the beta regression model are estimated using the maximum likelihood method. In cases where there is a multicollinearity problem, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance.In the presence of multicollinearity, the use of maximum likelihood (ML) leads to problems such as inconsistent parameter estimates and inflated variance. In this study, KL estimator and its jackknifed version are proposed to reduce the effects of multicollinearity in the beta regression model. The performance of the proposed jackknifed KL beta regression estimator is compared with ridge, Liu and KL estimators through simulation studies and real data applications. The results show that the proposed estimators mostly outperform ML, ridge, Liu and KL estimators.
引用
收藏
页码:7789 / 7805
页数:17
相关论文
共 50 条
  • [1] On the jackknife Kibria-Lukman estimator for the linear regression model
    Ugwuowo, Fidelis Ifeanyi
    Oranye, Henrietta Ebele
    Arum, Kingsley Chinedu
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 6116 - 6128
  • [2] Modified jackknife Kibria-Lukman estimator for the Poisson regression model
    Oranye, Henrietta Ebele
    Ugwuowo, Fidelis Ifeanyi
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (06):
  • [3] Kibria-Lukman type estimator for gamma regression model
    Shewa, Gladys Amos
    Ugwuowo, Fidelis Ifeayi
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (01):
  • [4] On the mixed Kibria-Lukman estimator for the linear regression model
    Chen, Hongmei
    Wu, Jibo
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] On the preliminary test Kibria-Lukman estimator for the linear regression model
    Deng, Xiangyun
    Wu, Jibo
    Kibria, B. M. Golam
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [6] A robust Kibria-Lukman estimator for linear regression model to combat multicollinearity and outliers
    Majid, Abdul
    Ahmad, Shakeel
    Aslam, Muhammad
    Kashif, Muhammad
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04):
  • [7] Kibria-Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application
    Alrweili, Hleil
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
  • [8] Kibria-Lukman estimator for the Conway-Maxwell Poisson regression model: Simulation and applications
    Abonazel, Mohamed R.
    Saber, Ashrakat Adel
    Awwad, Fuad A.
    [J]. SCIENTIFIC AFRICAN, 2023, 19
  • [9] Kibria-Lukman estimator for the zero inflated negative binomial regression model: theory, simulation and applications
    Akram, Muhammad Nauman
    Amin, Muhammad
    Afzal, Nimra
    Kibria, B. M. Golam
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [10] Generalized Kibria-Lukman Estimator: Method, Simulation, and Application
    Dawoud, Issam
    Abonazel, Mohamed R.
    Awwad, Fuad A.
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8