Gradient recovery based a posteriori error estimator for the adaptive direct discontinuous Galerkin method

被引:0
|
作者
Cao, Huihui [1 ]
Huang, Yunqing [2 ]
Yi, Nianyu [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
关键词
Direct discontinuous Galerkin; Gradient recovery; A posteriori error estimator; Adaptive; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1007/s10092-023-00513-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a gradient recovery method for the direct discontinuous Galerkin (DDG) method. A quadratic polynomial is obtain by using the local discrete least-squares fitting to the gradient of numerical solution at certain sampling points. The recovered gradient is defined on a piecewise continuous space, and it may be discontinuous on the whole domain. Based on the recovered gradient, we introduce a posteriori error estimator which takes the L2 norm of the difference between the direct and post-processed approximations. Some benchmark test problems with typical difficulties are carried out to illustrate the superconvergence of the recovered gradient and validate the asymptotic exactness of the recovery-based a posteriori error estimator. Most of the test problems are from the US National Institute for Standards and Technology (NIST).
引用
收藏
页数:29
相关论文
共 50 条
  • [21] A posteriori error estimates for discontinuous Galerkin method to the elasticity problem
    Thi Hong Cam Luong
    Daveau, Christian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1348 - 1369
  • [22] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [23] GOAL ORIENTED A POSTERIORI ERROR ESTIMATES FOR THE DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 15 - 23
  • [24] ON A POSTERIORI ERROR ESTIMATES FOR SPACE TIME DISCONTINUOUS GALERKIN METHOD
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 125 - 134
  • [25] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Eric T. Chung
    Eun-Jae Park
    Lina Zhao
    Journal of Scientific Computing, 2018, 75 : 1079 - 1101
  • [26] A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems
    Larson, MG
    Barth, TJ
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 363 - 368
  • [27] An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods
    Giani, Stefano
    Grubisic, Luka
    Hakula, Harri
    Ovall, Jeffrey S.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 562 - 574
  • [28] A posteriori error estimator for exponentially fitted Discontinuous Galerkin approximation of advection dominated problems
    Ariel L. Lombardi
    Paola Pietra
    Mariana I. Prieto
    Calcolo, 2016, 53 : 83 - 103
  • [29] A posteriori error estimator for exponentially fitted Discontinuous Galerkin approximation of advection dominated problems
    Lombardi, Ariel L.
    Pietra, Paola
    Prieto, Mariana I.
    CALCOLO, 2016, 53 (01) : 83 - 103
  • [30] An a posteriori error estimator for -adaptive continuous Galerkin methods for photonic crystal applications
    Giani, Stefano
    COMPUTING, 2013, 95 (05) : 395 - 414