Heterogeneous characteristics and absorption enhancement of refractory black carbon in an urban city of China

被引:2
|
作者
Chen, Shuoyuan [1 ,4 ]
Wang, Qiyuan [1 ,2 ,3 ,8 ]
Zhang, Yong [1 ,4 ]
Tian, Jie [1 ,2 ]
Wang, Jin [1 ]
Ho, Steven Sai Hang [5 ]
Li, Li [1 ,4 ]
Ran, Weikang [1 ,3 ]
Han, Yongming [1 ,2 ,3 ]
Pavese, Giulia [6 ]
Cao, Junji [7 ]
机构
[1] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China
[2] CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China
[3] Guanzhong Plain Ecol Environm Change & Comprehens, Xian 710061, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA
[6] Italian Natl Res Council CNR, Inst Methodol Environm Anal IMAA, I-85050 Tito, PZ, Italy
[7] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[8] Chinese Acad Sci, Inst Earth Environm, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Refractory black carbon mixing state; Property differences; Source apportionment; Light absorption; Secondary aging; POSITIVE MATRIX FACTORIZATION; MIXING STATE; LIGHT-ABSORPTION; SOURCE APPORTIONMENT; PARTICULATE MATTER; OPTICAL-PROPERTIES; SIZE DISTRIBUTION; RURAL SITES; AEROSOL; PARTICLES;
D O I
10.1016/j.scitotenv.2023.162997
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, field measurement was conducted using an integrated online monitoring system to characterize heterogeneous properties and light absorption of refractory black carbon (rBC). rBC particles are mainly from the incomplete combustion of carbonaceous fuels. With the data collected from a single particle soot photome-ter, thickly coated (BCkc) and thinly coated (BCnc) particles are characterized with their lag times. With different responses to the precipitation, a dramatical decline of 83 % in the number concentration of BCkc is shown after rainfall, while that of BCnc decreases by 39 %. There is a contrast in core size distribution that BCkc is always with larger particle sizes but has smaller core mass median diameters (MMD) than BCnc. The mean rBC-containing particle mass absorption cross-section (MAC) is 6.70 +/- 1.52 m2 g-1, while the corresponding rBC core is 4.90 +/- 1.02 m2 g-1. Interestingly, there are wide variations in the core MAC values which range by 57 % from 3.79 to 5.95 m2 g-1, which are also closely related to those of the whole rBC-containing particles with a Pearson cor-relation of 0.58 (p < 0.01). Errors would be made if we eliminate the discrepancies and set the core MAC as a constant when calculating absorption enhancement (Eabs). In this study, the mean Eabs is 1.37 +/- 0.11 while the source appor-tionment shows that there are five contributors of Eabs including secondary aging (37 %), coal combustion (26 %), fugitive dust (15 %), biomass burning (13 %) and traffic-related emissions (9 %). Secondary aging is found to be the highest contributor due to the liquid phase reactions in formations of secondary inorganic aerosol. Our study char-acterizes property diversities and provides insights into the sources impacting the light absorption of rBC and will be helpful for controlling it in the future.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Evolution of refractory black carbon mixing state in an urban environment
    Kasparoglu, Sabin
    Cai, Lintong
    Meskhidze, Nicholas
    Petters, Markus D.
    ATMOSPHERIC ENVIRONMENT, 2024, 333
  • [22] Secondary inorganic aerosol dominated the light absorption enhancement of black carbon aerosol in Wuhan, Central China
    Zheng, Huang
    Kong, Shaofei
    Chen, Nan
    Wu, Cheng
    ATMOSPHERIC ENVIRONMENT, 2022, 287
  • [23] Light absorption of black carbon and brown carbon in winter in North China Plain: comparisons between urban and rural sites
    Sun, Jiaxing
    Xie, Conghui
    Xu, Weiqi
    Chen, Chun
    Ma, Nan
    Xu, Wanyun
    Lei, Lu
    Li, Zhijie
    He, Yao
    Qiu, Yanmei
    Wang, Qingqing
    Pan, Xiaole
    Su, Hang
    Cheng, Yafang
    Wu, Cheng
    Fu, Pingqing
    Wang, Zifa
    Sun, Yele
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 770
  • [24] Coatings and their enhancement of black carbon light absorption in the tropical atmosphere
    Schwarz, J. P.
    Spackman, J. R.
    Fahey, D. W.
    Gao, R. S.
    Lohmann, U.
    Stier, P.
    Watts, L. A.
    Thomson, D. S.
    Lack, D. A.
    Pfister, L.
    Mahoney, M. J.
    Baumgardner, D.
    Wilson, J. C.
    Reeves, J. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D3)
  • [25] Radiative absorption enhancement from coatings on black carbon aerosols
    Cui, Xinjuan
    Wang, Xinfeng
    Yang, Lingxiao
    Chen, Bing
    Chen, Jianmin
    Andersson, August
    Gustafsson, Orjan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 551 : 51 - 56
  • [26] Light absorption of black and brown carbon in eastern China
    Tang, Rongzhi
    Cui, Weizhen
    Zhang, Xiuli
    Tan, Yu
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 489
  • [27] Light absorption of black carbon is doubled at Mt. Tai and typical urban area in North China
    Bai, Zhe
    Cui, Xinjian
    Wang, Xinfeng
    Xie, Huijun
    Chen, Bing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 635 : 1144 - 1151
  • [28] Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China
    Wang, Qiyuan
    Huang, Ru-Jin
    Zhao, Zhuzi
    Cao, Junji
    Ni, Haiyan
    Tie, Xuexi
    Zhao, Shuyu
    Su, Xiaoli
    Han, Yongming
    Shen, Zhenxing
    Wang, Yichen
    Zhang, Ningning
    Zhou, Yaqing
    Corbin, Joel C.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (20) : 12505 - 12519
  • [29] Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada
    Chan, T. W.
    Brook, J. R.
    Smallwood, G. J.
    Lu, G.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (20) : 10407 - 10432
  • [30] Characteristics of Mass Absorption Efficiency of Elemental Carbon in Urban Chengdu, Southwest China: Implication for the Coating Effects on Aerosol Absorption
    Tao J.
    Zhang Z.
    Wu Y.
    Lin Z.
    Cao J.
    Shen Z.
    Zhang R.
    Aerosol Science and Engineering, 2018, 2 (1) : 33 - 41