Heterogeneous characteristics and absorption enhancement of refractory black carbon in an urban city of China

被引:2
|
作者
Chen, Shuoyuan [1 ,4 ]
Wang, Qiyuan [1 ,2 ,3 ,8 ]
Zhang, Yong [1 ,4 ]
Tian, Jie [1 ,2 ]
Wang, Jin [1 ]
Ho, Steven Sai Hang [5 ]
Li, Li [1 ,4 ]
Ran, Weikang [1 ,3 ]
Han, Yongming [1 ,2 ,3 ]
Pavese, Giulia [6 ]
Cao, Junji [7 ]
机构
[1] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China
[2] CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China
[3] Guanzhong Plain Ecol Environm Change & Comprehens, Xian 710061, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA
[6] Italian Natl Res Council CNR, Inst Methodol Environm Anal IMAA, I-85050 Tito, PZ, Italy
[7] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[8] Chinese Acad Sci, Inst Earth Environm, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Refractory black carbon mixing state; Property differences; Source apportionment; Light absorption; Secondary aging; POSITIVE MATRIX FACTORIZATION; MIXING STATE; LIGHT-ABSORPTION; SOURCE APPORTIONMENT; PARTICULATE MATTER; OPTICAL-PROPERTIES; SIZE DISTRIBUTION; RURAL SITES; AEROSOL; PARTICLES;
D O I
10.1016/j.scitotenv.2023.162997
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, field measurement was conducted using an integrated online monitoring system to characterize heterogeneous properties and light absorption of refractory black carbon (rBC). rBC particles are mainly from the incomplete combustion of carbonaceous fuels. With the data collected from a single particle soot photome-ter, thickly coated (BCkc) and thinly coated (BCnc) particles are characterized with their lag times. With different responses to the precipitation, a dramatical decline of 83 % in the number concentration of BCkc is shown after rainfall, while that of BCnc decreases by 39 %. There is a contrast in core size distribution that BCkc is always with larger particle sizes but has smaller core mass median diameters (MMD) than BCnc. The mean rBC-containing particle mass absorption cross-section (MAC) is 6.70 +/- 1.52 m2 g-1, while the corresponding rBC core is 4.90 +/- 1.02 m2 g-1. Interestingly, there are wide variations in the core MAC values which range by 57 % from 3.79 to 5.95 m2 g-1, which are also closely related to those of the whole rBC-containing particles with a Pearson cor-relation of 0.58 (p < 0.01). Errors would be made if we eliminate the discrepancies and set the core MAC as a constant when calculating absorption enhancement (Eabs). In this study, the mean Eabs is 1.37 +/- 0.11 while the source appor-tionment shows that there are five contributors of Eabs including secondary aging (37 %), coal combustion (26 %), fugitive dust (15 %), biomass burning (13 %) and traffic-related emissions (9 %). Secondary aging is found to be the highest contributor due to the liquid phase reactions in formations of secondary inorganic aerosol. Our study char-acterizes property diversities and provides insights into the sources impacting the light absorption of rBC and will be helpful for controlling it in the future.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The light absorption enhancement characteristics of black carbon aerosols in urban Guangzhou
    Sun, Jia-Yin
    Wu, Cheng
    Wu, Dui
    Li, Mei
    Deng, Tao
    Yang, Wen-Da
    Cheng, Peng
    Liang, Yue
    Tan, Jian
    He, Guo-Wen
    Cheng, Chun-Lei
    Li, Lei
    Zhou, Zhen
    Zhongguo Huanjing Kexue/China Environmental Science, 2020, 40 (10): : 4177 - 4189
  • [2] Light absorption enhancement of black carbon from urban haze in Northern China winter
    Chen, Bing
    Bai, Zhe
    Cui, Xinjuan
    Chen, Jianmin
    Andersson, August
    Gustafsson, Orjan
    ENVIRONMENTAL POLLUTION, 2017, 221 : 418 - 426
  • [3] Light absorption enhancement of black carbon in urban Beijing in summer
    Xie, Conghui
    Xu, Weiqi
    Wan, Junfeng
    Liu, Dantong
    Ge, Xinlei
    Zhang, Qi
    Wang, Qingqing
    Du, Wei
    Zhao, Jian
    Zhou, Wei
    Li, Jie
    Fu, Pingqing
    Wang, Zifa
    Worsnop, Douglas
    Sun, Yele
    ATMOSPHERIC ENVIRONMENT, 2019, 213 : 499 - 504
  • [4] Moisture-induced secondary inorganic aerosol formation dominated the light absorption enhancement of refractory black carbon at an urban site in northwest China
    Chen, Ziqi
    Wu, Yunfei
    Wang, Xin
    Huang, Ru-jin
    Zhang, Renjian
    ATMOSPHERIC ENVIRONMENT, 2023, 315
  • [5] Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China
    Lan, Zi-Juan
    Huang, Xiao-Feng
    Yu, Kuang-You
    Sun, Tian-Le
    Zeng, Li-Wu
    Hu, Min
    ATMOSPHERIC ENVIRONMENT, 2013, 69 : 118 - 123
  • [6] Absorption enhancement of black carbon and the contribution of brown carbon to light absorption in the summer of Nanjing, China
    Cui, Fenping
    Pei, Shixin
    Chen, Mindong
    Ma, Yan
    Pan, Qinwei
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (02) : 480 - 487
  • [7] Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing
    Liu, Hang
    Pan, Xiaole
    Liu, Dantong
    Liu, Xiaoyong
    Chen, Xueshun
    Tian, Yu
    Sun, Yele
    Fu, Pingqing
    Wang, Zifa
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (09) : 5771 - 5785
  • [8] Quantifying urban black carbon absorption enhancement under influence of open crop straw burning in Eastern China
    Meng, Qingxiao
    Zhang, Yunjiang
    Zhong, Sheng
    Chen, Cheng
    Yang, Yifan
    Ge, Xinlei
    SUSTAINABLE HORIZONS, 2024, 12
  • [9] Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement
    Wang, Qiyuan
    Huang, R. -J.
    Cao, Junji
    Han, Yongming
    Wang, Gehui
    Li, Guohui
    Wang, Yichen
    Dai, Wenting
    Zhang, Renjian
    Zhou, Yaqing
    AEROSOL SCIENCE AND TECHNOLOGY, 2014, 48 (07) : 689 - 697
  • [10] Source apportionment of absorption enhancement of black carbon in different environments of China
    Zhang, Xiaorong
    Zhu, Zhejing
    Cao, Feiyan
    Tiwari, Shani
    Chen, Bing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 755