Image-based time series forecasting: A deep convolutional neural network approach

被引:14
|
作者
Semenoglou, Artemios-Anargyros [1 ]
Spiliotis, Evangelos [1 ]
Assimakopoulos, Vassilios [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Forecasting & Strategy Unit, Athens, Greece
关键词
Time series; Forecasting; Images; Deep Learning; Convolutional Neural Networks; M competitions; MODEL; COMPETITION; ACCURACY;
D O I
10.1016/j.neunet.2022.10.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspired by the successful use of deep learning in computer vision, in this paper we introduce ForCNN, a novel deep learning method for univariate time series forecasting that mixes convolutional and dense layers in a single neural network. Instead of using conventional, numeric representations of time series data as input to the network, the proposed method considers visual representations of it in the form of images to directly produce point forecasts. Three variants of deep convolutional neural networks are examined to process the images, the first based on VGG-19, the second on ResNet-50, while the third on a self-designed architecture. The performance of the proposed approach is evaluated using time series of the M3 and M4 forecasting competitions. Our results suggest that image-based time series forecasting methods can outperform both standard and state-of-the-art forecasting models. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [1] Image Classification of Time Series Based on Deep Convolutional Neural Network
    Cao, Wenjie
    Zhang, Cheng
    Xiong, Zhenzhen
    Wang, Ting
    Chen, Junchao
    Zhang, Bengong
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8488 - 8491
  • [2] Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
    Wan, Renzhuo
    Mei, Shuping
    Wang, Jun
    Liu, Min
    Yang, Fan
    [J]. ELECTRONICS, 2019, 8 (08)
  • [3] SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting
    Feng, Cong
    Zhang, Jie
    [J]. SOLAR ENERGY, 2020, 204 : 71 - 78
  • [4] Image-Based Learning Approach Applied to Time Series Forecasting
    Ramirez-Amaro, K.
    Chimal-Eguia, J. C.
    [J]. JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2012, 10 (03) : 361 - 379
  • [5] IMAGE-BASED AIR QUALITY ANALYSIS USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Chakma, Avijoy
    Vizena, Ben
    Cao, Tingting
    Lin, Jerry
    Zhang, Jing
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3949 - 3952
  • [6] Quantized Deep Residual Convolutional Neural Network for Image-Based Dietary Assessment
    Tan, Ren Zhang
    Chew, Xinying
    Khaw, Khai Wah
    [J]. IEEE ACCESS, 2020, 8 : 111875 - 111888
  • [7] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Yinuo Huo
    Qixing Zhang
    Yang Jia
    Dongcai Liu
    Jinfu Guan
    Gaohua Lin
    Yongming Zhang
    [J]. Fire Technology, 2022, 58 : 1445 - 1468
  • [8] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Huo, Yinuo
    Zhang, Qixing
    Jia, Yang
    Liu, Dongcai
    Guan, Jinfu
    Lin, Gaohua
    Zhang, Yongming
    [J]. FIRE TECHNOLOGY, 2022, 58 (03) : 1445 - 1468
  • [9] A Spectrogram Image-Based Network Anomaly Detection System Using Deep Convolutional Neural Network
    Khan, Adnan Shahid
    Ahmad, Zeeshan
    Abdullah, Johari
    Ahmad, Farhan
    [J]. IEEE ACCESS, 2021, 9 : 87079 - 87093
  • [10] A novel image-based convolutional neural network approach for traffic congestion estimation
    Gao, Ying
    Li, Jinlong
    Xu, Zhigang
    Liu, Zhangqi
    Zhao, Xiangmo
    Chen, Jianhua
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180