Observation-driven filtering of time-varying parameters using moment conditions

被引:0
|
作者
Creal, Drew [1 ,5 ]
Koopman, Siem Jan [2 ,3 ]
Lucas, Andre [2 ,3 ]
Zamojski, Marcin [4 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands
[3] Tinbergen Inst, NL-1081 HV Amsterdam, Netherlands
[4] Univ Gothenburg, Ctr Finance, S-40530 Gothenburg, Sweden
[5] Univ Notre Dame, Dept Econ, 3060 Jenkins Nanov Halls, Notre Dame, IN 46556 USA
关键词
Dynamic models; Non-linearity; Influence function; GMM; Stable distribution; MODELS; SERIES; GMM;
D O I
10.1016/j.jeconom.2023.105635
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a new and flexible semi-parametric approach for time-varying parameter models when the true dynamics are unknown. The time-varying parameters are estimated using a recursive updating scheme that is driven by the influence function of a conditional moments-based criterion. We show that the updates ensure local improvements of the conditional criterion function in expectation. The dynamics are observation driven, which yields a computationally efficient methodology that does not require advanced simulation techniques for estimation. We illustrate the new approach using both simulated and real empirical data and derive new, robust filters for time-varying scales based on characteristic functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] MIMO time-varying channel tracking using annealed particle filtering
    Du, ZC
    Tang, B
    Le, K
    [J]. 2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 219 - 222
  • [32] Adaptive MIMO time-varying channel equalization using particle filtering
    Du, ZC
    Tang, B
    Li, K
    [J]. 2005 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING PROCEEDINGS, VOLS 1 AND 2, 2005, : 123 - 126
  • [33] ESTIMATION OF EVOKED-POTENTIALS USING TIME-VARYING WIENER FILTERING
    WEERD, JPCD
    MARTENS, WLJ
    COLON, EJ
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1977, 43 (04): : 476 - 477
  • [34] Handy sufficient conditions for the convergence of the maximum likelihood estimator in observation-driven models
    Randal Douc
    François Roueff
    Tepmony Sim
    [J]. Lithuanian Mathematical Journal, 2015, 55 : 367 - 392
  • [35] Dynamic Filtering with Time-Varying Transmission Lines
    Chen, Sean
    Wang, Yuanxun Ethan
    [J]. 2023 IEEE RADIO AND WIRELESS SYMPOSIUM, RWS, 2023, : 64 - 66
  • [36] Toward optimal linear time-varying filtering
    Assouline, Lior
    Porat, Moshe
    [J]. OPTIM 2004: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL 4: APPLIED ELECTRONICS, ELECTRICAL ENGINEERING EDUCATION, 2004, : 131 - 138
  • [37] The Realization of Time-varying Filtering for Physiological Signals
    Ye Guangjian
    Xin Mai
    Long Tao
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 5031 - +
  • [38] Filtering, Sampling, and Reconstruction With Time-Varying Bandwidths
    Hao, Yufang
    Kempf, Achim
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (03) : 241 - 244
  • [39] SOLUTION OF A TIME-VARYING WIENER FILTERING PROBLEM
    ANDERSON, BD
    MOORE, JB
    [J]. ELECTRONICS LETTERS, 1967, 3 (12) : 562 - &
  • [40] Time-Varying Complementary Filtering for Attitude Estimation
    Chang-Siu, Evan
    Tomizuka, Masayoshi
    Kong, Kyoungchul
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011,