Observation-driven filtering of time-varying parameters using moment conditions

被引:0
|
作者
Creal, Drew [1 ,5 ]
Koopman, Siem Jan [2 ,3 ]
Lucas, Andre [2 ,3 ]
Zamojski, Marcin [4 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands
[3] Tinbergen Inst, NL-1081 HV Amsterdam, Netherlands
[4] Univ Gothenburg, Ctr Finance, S-40530 Gothenburg, Sweden
[5] Univ Notre Dame, Dept Econ, 3060 Jenkins Nanov Halls, Notre Dame, IN 46556 USA
关键词
Dynamic models; Non-linearity; Influence function; GMM; Stable distribution; MODELS; SERIES; GMM;
D O I
10.1016/j.jeconom.2023.105635
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a new and flexible semi-parametric approach for time-varying parameter models when the true dynamics are unknown. The time-varying parameters are estimated using a recursive updating scheme that is driven by the influence function of a conditional moments-based criterion. We show that the updates ensure local improvements of the conditional criterion function in expectation. The dynamics are observation driven, which yields a computationally efficient methodology that does not require advanced simulation techniques for estimation. We illustrate the new approach using both simulated and real empirical data and derive new, robust filters for time-varying scales based on characteristic functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models
    Koopman, Siem Jan
    Lucas, Andre
    Scharth, Marcel
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 2016, 98 (01) : 97 - 110
  • [2] DSGE Models with observation-driven time-varying volatility
    Angelini, Giovanni
    Gorgi, Paolo
    [J]. ECONOMICS LETTERS, 2018, 171 : 169 - 171
  • [3] In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models
    Blasques, Francisco
    Koopman, Siem Jan
    Lasak, Katarzyna
    Lucas, Andre
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 875 - 887
  • [4] Necessary and sufficient conditions for the identifiability of observation-driven models
    Douc, Randal
    Roueff, Francois
    Sim, Tepmony
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (02) : 140 - 160
  • [5] Missing observations in observation-driven time series models
    Blasques, F.
    Gorgi, P.
    Koopman, S. J.
    [J]. JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 542 - 568
  • [6] H∞ Filtering for Systems with Delays and Time-varying Nonlinear Parameters
    Zhou, Shaosheng
    Lam, James
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2010, 29 (04) : 601 - 627
  • [7] H∞ Filtering for Systems with Delays and Time-varying Nonlinear Parameters
    Shaosheng Zhou
    James Lam
    [J]. Circuits, Systems and Signal Processing, 2010, 29 : 601 - 627
  • [8] Observation-driven Bayesian Filtering for Global Location Estimation in the Field Area
    He, Tao
    Hirose, Shigeo
    [J]. JOURNAL OF FIELD ROBOTICS, 2013, 30 (04) : 489 - 518
  • [9] Observation-driven models for discrete-valued time series
    Armillotta, Mirko
    Luati, Alessandra
    Lupparelli, Monia
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1393 - 1433
  • [10] A novel time-varying coefficient Poisson difference model driven by observation
    Liu, Ye
    Wang, Dehui
    [J]. STAT, 2024, 13 (03):