On the potential of mapping sea level anomalies from satellite altimetry with Random Forest Regression

被引:2
|
作者
Passaro, Marcello [1 ]
Juhl, Marie-Christin [1 ]
机构
[1] Tech Univ Munich, Deutsch Geodat Forsch Inst, Arcisstr 21, D-80333 Munich, Germany
关键词
Sea level anomalies; Satellite altimetry; Spatio-temporal interpolation; Machine learning; Random Forest Regression; VERTICAL LAND MOTION; OCEAN;
D O I
10.1007/s10236-023-01540-4
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The sea level observations from satellite altimetry are characterised by a sparse spatial and temporal coverage. For this reason, along-track data are routinely interpolated into daily grids. These grids are strongly smoothed in time and space and are generated using an optimal interpolation routine requiring several pre-processing steps and covariance characterisation. In this study, we assess the potential of Random Forest Regression to estimate daily sea level anomalies. Along-track sea level data from 2004 are used to build a training dataset whose predictors are the neighbouring observations. The validation is based on the comparison against daily averages from tide gauges. The generated dataset is on average 10% more correlated to the tide gauge records than the commonly used product from Copernicus. While the latter is more optimised for the detection of spatial mesoscales, we show how the methodology of this study has the potential to improve the characterisation of sea level variability.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [21] Caspian Sea Level Change Observed by Satellite Altimetry
    Chen, Jianli
    Cazenave, Anny
    Wang, Song-Yun
    Li, Jin
    [J]. REMOTE SENSING, 2023, 15 (03)
  • [22] Arctic Sea Level During the Satellite Altimetry Era
    Carret, A.
    Johannessen, J. A.
    Andersen, O. B.
    Ablain, M.
    Prandi, P.
    Blazquez, A.
    Cazenave, A.
    [J]. SURVEYS IN GEOPHYSICS, 2017, 38 (01) : 251 - 275
  • [23] Arctic Sea Level During the Satellite Altimetry Era
    A. Carret
    J. A. Johannessen
    O. B. Andersen
    M. Ablain
    P. Prandi
    A. Blazquez
    A. Cazenave
    [J]. Surveys in Geophysics, 2017, 38 : 251 - 275
  • [24] The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry
    Richard D. Ray
    Bryant D. Loomis
    Victor Zlotnicki
    [J]. Journal of Geodesy, 2021, 95
  • [25] The mean seasonal cycle in relative sea level from satellite altimetry and gravimetry
    Ray, Richard D.
    Loomis, Bryant D.
    Zlotnicki, Victor
    [J]. JOURNAL OF GEODESY, 2021, 95 (07)
  • [26] A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry
    Prandi, P.
    Ablain, M.
    Cazenave, A.
    Picot, N.
    [J]. MARINE GEODESY, 2012, 35 : 61 - 81
  • [27] Recent Sea Level Change in the Black Sea from Satellite Altimetry and Tide Gauge Observations
    Avsar, Nevin Betul
    Kutoglu, Senol Hakan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (03)
  • [28] North SEAL: a new dataset of sea level changes in the North Sea from satellite altimetry
    Dettmering, Denise
    Mueller, Felix L.
    Oelsmann, Julius
    Passaro, Marcello
    Schwatke, Christian
    Restano, Marco
    Benveniste, Jerome
    Seitz, Florian
    [J]. EARTH SYSTEM SCIENCE DATA, 2021, 13 (08) : 3733 - 3753
  • [29] Extracting Satellite Laser Altimetry Footprints With the Required Accuracy by Random Forest
    Li, Binbin
    Xie, Huan
    Tong, Xiaohua
    Zhang, Zhijie
    Liu, Shijie
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (08) : 1347 - 1351
  • [30] Uranium anomalies detection through Random Forest regression
    Costa, Iago Sousa Lima
    Serafim, Isabelle Cavalcanti Correa de Oliveira
    Tavares, Felipe Mattos
    Polo, Hugo Jose de Oliveira
    [J]. EXPLORATION GEOPHYSICS, 2020, 51 (05) : 555 - 569